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Partitioning Balls into Topologically Equivalent Pieces

Christian Richter

Christian Richter wurde 1969 in Jena geboren. Nach dem Abitur studierte er Ma-
thematik an der Friedrich-Schiller-Universität in Jena. Gegenwärtig ist er wissen-
schaftlicher Assistent am dortigen mathematischen Institut und beschäftigt sich in
Vorbereitung auf eine Habilitation mit Zerlegungs- und Überdeckungsproblemen me-
trischer Räume und mit approximationstheoretischen Anwendungen. In seiner Frei-
zeit unternimmt er gerne Wanderungen und findet Entspannung beim Musikhören.

1 Introduction

In 1949 B. L. van der Waerden asked for a proof for the non-existence of a disjoint
decomposition B = A1 ∪ A2 of a closed ball (circle) in the Euclidean plane E2 into
two congruent pieces A1 and A2 (cf. [Wae]). This problem found, beside its solution in
the same issue of “Elemente der Mathematik”, many generalizations (cf. [Wa1], [Wa2],
[He], [Ede1], [Ede2], [E/J/T], [Ri]). We use the most general notation from [Wa1]: Let
& be a group acting on a set X . A subset Y ⊆ X is called n-divisible w.r.t. & if Y may
be partitioned into n pieces which are pairwise congruent via &.

.

Im Jahre 1949 veröffentlichten die Elemente der Mathematik eine Aufgabe von van
der Waerden:

Ist es möglich, eine Kreisscheibe in zwei zueinander fremde kongruente Punktmengen zu
zerlegen? (Ob man den Randkreis zur Kreisscheibe rechnet oder nicht, ist gleichgültig.
Das einfachste ist, den Randkreis dazu zu rechnen.)

In den vergangenen 50 Jahren wurden verschiedene Verallgemeinerungen dieses Pro-
blems behandelt. Sie betreffen insbesondere den Fall höherer Dimensionen und den
Fall, wo statt kongruenter Teile topologisch äquivalente Teile betrachtet werden. –
Christian Richter beweist im vorliegenden Beitrag das folgende allgemeine Resultat:

Eine abgeschlossene Kugel B im d-dimensionalen euklidischen Raum lässt genau dann
eine Zerlegung in n topologisch äquivalente Teile zu, wenn das Paar (d,n) vom Paar
(1, 2) verschieden ist. ust
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In the Euclidean space Ed it is the natural problem to discuss the n-divisibility of sets
w.r.t. the group @d of all isometries of Ed. In the paper [He] it is shown that every
closed, bounded and convex set in Ed is not 2-divisible w.r.t. @d. Moreover it is proved
that closed intervals are not n-divisible w.r.t. @1 for all n ∈ {2, 3, 4, . . .}. E. Hertel asks
for the largest group of transformations of Ed for which these results can be generalized.

Of course, half-open intervals [a, b) ⊆ E1 are n-divisible w.r.t. translations. Similarly,
the small manipulation of removing its center makes a circle in the Euclidean plane
n-divisible w.r.t. rotations. This shows that “small” topological changes can change the
property of n-divisibility of sets. On that account it becomes interesting to consider the
n-divisibility of bounded convex sets w.r.t. the group 7d of all homeomorphisms of Ed

onto itself. It is obviously sufficient to restrict the considerations to balls, which represent
the topological type of bounded convex sets. We call a set B ⊆ Ed a (general) ball of
radius r > 0 centered in x0 ∈ Ed if{

x ∈ Ed : ‖x − x0‖ < r
}
⊆ B ⊆

{
x ∈ Ed : ‖x − x0‖ ≤ r

}
.

2 Partitioning closed balls
Before we discuss the n-divisibility of closed balls in Ed, we ask for partitions into n
pairwise homeomorphic topological subspaces. This property of the partition sets is more
general than the pairwise congruence via 7d, since a homeomorphic bijection between
two subsets of Ed can not be extended to a transformation from 7d in general.

Theorem 1 Let B be a closed ball in Ed (d ≥ 1) and let n ≥ 2. Then there exists a
disjoint decomposition of B into n pairwise homeomorphic topological subspaces of Ed.

Proof. The cases (d,n) 6= (1, 2) will be discussed in the proof of the following Theo-
rem 2.

Fig. 1

If d = 1 and n = 2 we assume that B = [−1, 1] without loss of generality (cf. Fig. 1).
We consider the decomposition B = S ∪ T where

S = {−1} ∪
∞⋃

k=0

Sk with Sk =

{[
−1 + 2−(k+1),−1 + 2−k

)
if k is even,[

1− 2−k , 1− 2−(k+1)
)

if k is odd

and

T = {1} ∪
∞⋃

k=0

Tk with Tk =

{[
1− 2−k , 1− 2−(k+1)

)
if k is even,[

−1 + 2−(k+1),−1 + 2−k
)

if k is odd.
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A homeomorphism ϕ from S onto T can be obtained as follows: We define the restriction
ϕ|Sk of ϕ to the interval Sk , k ∈ {0, 1, 2, . . .}, to be the translation of Sk onto Tk and,
of course, ϕ(−1) = 1. The continuity of ϕ in a point x0 ∈ S \ {−1}, say x0 ∈ Sk0 ,
is implied by the existence of a neighbourhood U(x0) in the topological space S such
that U(x0) ⊆ Sk0 . Hence ϕ|U(x0) is a restriction of a translation and, consequently, ϕ is
continuous in x0. If x0 = −1 we observe, that all points x ∈ S with ‖x−x0‖ ≤ 2−2i , i.e.

x ∈ {−1}∪
∞⋃
l=i

S2l , are mapped into {1}∪
∞⋃
l=i

T2l, i.e. ‖ϕ(x)−ϕ(x0)‖ = ‖ϕ(x)−1‖ ≤ 2−2i .

The continuity of ϕ−1 can analogously be checked. This completes the proof. h

The investigation of the n-divisibility w.r.t. 7d requires several steps. The first proposition
shows that this n-divisibility is strictly harder than the partition property considered in
Theorem 1. (Proposition 1 is proved in a more general context in [Ri]. In the present
paper we give an elementary proof.)

Proposition 1 Closed balls of E1 are not 2-divisible w.r.t. 71.

Proof. Without loss of generality we consider the ball B = [0, 1]. We assume the contrary,
i.e. there exist two disjoint sets S and T and a homeomorphism τ ∈ 71 such that

[0, 1] = S ∪ T , τ(S) = T and 0 ∈ S . (1)

Fact 1: τ has no fixed point x0 = τ(x0) in [0, 1].
Such a point would belong to both the sets S and T, since τ(S) = T, in contradiction
to the disjointness of S and T.

Fact 2: τ is either strictly increasing or strictly decreasing.
This is simply implied by the injectivity of τ and Cauchy’s intermediate value theorem.

Case 1: τ is strictly increasing.
We prove the following statement by induction w.r.t. i:

Fact 3: Let i ∈ {0, 1, 2, . . .}. Then

(αi) τ 2i(0) < τ 2i+1(0) < τ 2i+2(0) ,

(βi)
[
τ 2i+2(0), 1

]
=
(
S ∩

[
τ 2i+2(0), 1

])
∪
(
T ∩

[
τ 2i+2(0), 1

])
,

(γi) τ
(
S ∩

[
τ 2i+2(0), 1

])
= T ∩

[
τ 2i+2(0), 1

]
and

(δi) τ 2i+2(0) ∈ S ∩
[
τ 2i+2(0), 1

]
.

We start with i = 0. The first inequality from (α0) is easily seen, since

τ 1(0) ∈ τ(S) = T = [0, 1] \ S ⊆ (0, 1]

and thus τ 0(0) = 0 < τ 1(0). Application of τ to this inequality yields τ 1(0) < τ 2(0),
which completes the verification of (α0). Equation (β0) is trivial in accordance with (1).
Moreover we have

min(T) = min(τ(S)) = τ(min(S)) = τ(0) ,
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hence
[0, τ(0)) ⊆ S

and, by application of τ , [
τ(0), τ 2(0)

)
⊆ T .

These inclusions imply that

S ∩
[
0, τ 2(0)

)
= [0, τ(0)) and T ∩

[
0, τ 2(0)

)
=
[
τ(0), τ 2(0)

)
. (2)

We obtain (γ0) by

τ
(
S ∩

[
τ 2(0), 1

])
= τ

(
S \
[
0, τ 2(0)

))
= τ

(
S \ [0, τ(0))

)
(by (2))

= T \
[
τ(0), τ 2(0)

)
= T \

[
0, τ 2(0)

)
(by (2))

= T ∩
[
τ 2(0), 1

]
.

Finally, we have τ 2(0) ∈ [0, 1], since τ 2(0) belongs to the closure of T in accordance
with the second part of (2). If τ 2(0) would belong to T we would obtain

τ(0) = τ−1
(
τ 2(0)

)
∈ τ−1(T) = S

in contradiction to (2). This shows the inclusion τ 2(0) ∈ S and completes the verification
of (δ0).
The step from i−1 to i, i ≥ 1, can similarly be done. We presuppose (βi−1), (γi−1),
and (δi−1) instead of (1), i.e. we replace [0, 1] by

[
τ 2i(0), 1

]
, S by S ∩

[
τ 2i(0), 1

]
, T by

T ∩
[
τ 2i(0), 1

]
, and 0 by τ 2i(0). Then we infer (αi), (βi), (γi), and (δi) by the same

arguments as above. This completes the proof of Fact 3.

Fig. 2

According to Fact 3 we have an increasing sequence
(
τ i(0)

)∞
i=0

in [0, 1] (cf. Fig. 2). The
limit x0 ∈ [0, 1] of this sequence is a fixed point of τ , since

τ(x0) = τ
(

lim
i→∞

τ i(0)
)

= lim
i→∞

τ i+1(0) = x0 .

Hence we obtained a contradiction to Fact 1. This closes the considerations of the first
case.

Case 2: τ is strictly decreasing.
We have τ(0) ∈ τ(S) ⊆ [0, 1]. According to Fact 1 we obtain 0 < τ(0) ≤ 1. Moreover
we have τ(1) < τ(0) ≤ 1. Consequently, τ(0)− id(0) > 0 and τ(1)− id(1) < 0. Hence
there exists an x0 ∈ (0, 1) with τ(x0)−x0 = 0 in contradiction to Fact 1. This completes
the proof of Proposition 1. h
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Proposition 2 Every closed ball in E1 is n-divisible w.r.t. 71 for all integers n ∈
{3, 4, 5, . . .}.

Proof. We consider the ball B = [0,n], which can be decomposed into the n intervals
[0, 1), [1, 2), . . . , [n− 2,n− 1), [n− 1,n] (cf. Fig. 3). The half-open intervals [ j − 1, j),
1 ≤ j ≤ n− 1, possess a partition

[ j − 1, j) = Sj ∪ Tj with

Sj =
{

j − 1
2

}
∪
∞⋃

k=1

({
j − 1

2

}
+ (−1)k ·

[
2−k−1, 2−k ]) ,

Tj =
∞⋃

k=1

({
j − 1

2

}
+ (−1)k+1 ·

(
2−k−1, 2−k)) .

The remaining interval [n− 1,n] can be decomposed into

[n− 1,n] = Sn ∪ Tn with

Sn =
{

n− 1
2

}
∪
∞⋃

k=1

({
n− 1

2

}
+
[
−2−2k+1,−2−2k] ∪ [2−2k , 2−2k+1

])
,

Tn =
∞⋃

k=1

({
n− 1

2

}
+
(
−2−2k ,−2−2k−1

)
∪
(
2−2k−1, 2−2k)) .

We consider the following partition:

B = A1 ∪ A2 ∪ . . . ∪ An with

Aj =
{

Sj ∪ Tj+1 if 1 ≤ j ≤ n− 1 ,

Sn ∪ T1 if j = n .

All the sets A1, A2, . . ., An−1 and the reflection −An of An have the following topo-
logical structure:

A =

(∞⋃
i=1

Ĉi

)
∪ {c} ∪

(∞⋃
i=1

Či

)
∪
(∞⋃

i=1

Ôi

)
∪
(∞⋃

i=1

Ǒi

)
.

The subsets Ĉi form an increasing sequence of closed and bounded intervals of positive
length which tends to a point c ∈ A. (Či)∞i=1 is a decreasing sequence of closed and
bounded intervals of positive length tending to c from above. Similarly, the sets Ôi are
open and bounded intervals of positive length which accumulate in o /∈ A from below.
The sequence (Ǒi)∞i=1 consists of open and bounded intervals of positive length and tends
to o from above. All the intervals Ĉi , Či , Ôi , and Ǒi are pairwise separated by intervals
of positive length. Moreover the closed set consisting of {c} and the closed intervals is
separated by an interval from the open set formed by the open intervals, too.
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Fig. 3

For any two given sets A and A′ of that type there exists a strictly increasing homeo-
morphism τ ∈ 71 such that τ(A) = A′. One can define τ piecewise linearly where Ĉ1

is mapped onto Ĉ ′1, Ĉ2 onto Ĉ ′2, . . ., c onto c′, . . ., Č2 onto Č ′2, Č1 onto Č ′1, Ô1 onto Ô′1,
Ô2 onto Ô′2, . . ., o onto o′, . . ., Ǒ2 onto Ǒ′2, and Ǒ1 onto Ǒ′1. This shows, that the sets
Ai , 1 ≤ i ≤ n, are pairwise congruent via 71, and completes the proof of Proposition 2.

h

Let us remark that the above construction does not apply to the case n = 2, since the two
sets S2 and T1 would not be separated by an interval. This would change the topological
structure of A2 = S2 ∪ T1.

Proposition 3 Every closed ball in E2 is 2-divisible w.r.t. 72.

Proof. We consider the rhomb B =
{

(x, y) ∈ E2 : |x| ≤ 1, |y| ≤ 1
4 (1− |x|)

}
instead of

a ball (cf. Fig. 4). B admits the decomposition B = S ∪ T where

S = {(−1, 0)} ∪
∞⋃

k=0

Sk and T = {(1, 0)} ∪
∞⋃

k=0

Tk with

Sk =

{{
(x, y) ∈ B : x ∈

[
−1 + 2−(k+1),−1 + 2−k

)}
if k is even,{

(x, y) ∈ B : x ∈
[
1− 2−k , 1− 2−(k+1)

)}
if k is odd,

and

Tk =

{{
(x, y) ∈ B : x ∈

[
1− 2−k , 1− 2−(k+1)

)}
if k is even,{

(x, y) ∈ B : x ∈
[
−1 + 2−(k+1),−1 + 2−k

)}
if k is odd.

(This partition is closely related to that given in the proof of Theorem 1.)

We define a homeomorphism τ ∈ 72 as a product τ = ϕ ◦ σ where σ is the reflection
on the vertical axis, i.e. σ(x, y) = (−x, y). The structure of ϕ is more difficult: For all
the sets σ(Sk ), which are of the form σ(Sk ) = {(x, y) ∈ B : x ∈ (ak , bk ]}, we consider

a covering square Rk =
[
ak − bk−ak

3 , bk + bk−ak
3

]
×
[
− 5(bk−ak )

6 , 5(bk−ak )
6

]
. The closed

squares Rk are mutually separated. The restriction ϕ|Rk to Rk is a homeomorphism of
Rk onto itself which leaves the boundary bd(Rk ) pointwise fixed and maps σ(Sk ) onto

Tk . Besides that, we demand the remaining points (x, y) /∈
∞⋃

k=0
Rk to be fixed under ϕ. It

is easily seen that the piecewise definitions of ϕ fit together and form a homeomorphism
ϕ ∈ 72.
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Consequently, we obtain τ = ϕ ◦ σ ∈ 72 such that

τ(S) = ϕ ◦ σ
(
{(−1, 0)} ∪

∞⋃
k=0

Sk

)

= ϕ
(
σ({(−1, 0)})

)
∪
∞⋃

k=0

ϕ
(
σ (Sk )

)
= {(1, 0)} ∪

∞⋃
k=0

Tk = T .

This completes the verification of Proposition 3. h

Proposition 4 Let d ∈ {2, 3, 4, . . .} and n ∈ {2, 3, 4, . . .} such that a closed ball in
Ed−1 is n-divisible w.r.t. 7d−1. Then every closed ball in Ed is n-divisible w.r.t. 7d.

Proof. According to the assumption there exist a closed ball Bd−1 ∈ Ed−1, a decompo-
sition Bd−1 = Sd−1

1 ∪ Sd−1
2 ∪ . . . ∪ Sd−1

n of Bd−1, and mappings τ d−1
i from 7d−1 such

that τ d−1
i

(
Sd−1

1

)
= Sd−1

i , 1 ≤ i ≤ n. Let Bd be a closed ball in Ed. We assume that
Bd = Bd−1 × [0, 1] without loss of generality. Of course, Bd admits the decomposition
Bd =

(
Sd−1

1 × [0, 1]
)
∪
(
Sd−1

2 × [0, 1]
)
∪ . . . ∪

(
Sd−1

n × [0, 1]
)
. Moreover, if the identity

on E1 is denoted by ι, then the mappings τ d
i = τ d−1

i × ι : Ed → Ed, 1 ≤ i ≤ n, belong
to 7d and fulfil τ d

i

(
Sd−1

1 × [0, 1]
)

= Sd−1
i × [0, 1]. This shows the n-divisibility of Bd

w.r.t. 7d. h

Propositions 1–4 amount to the following theorem:

Theorem 2 Let d ∈ {1, 2, 3, . . .}, n ∈ {2, 3, 4, . . .}, and let B be a closed ball in Ed.
Then B is n-divisible w.r.t. 7d if and only if (d,n) 6= (1, 2). h

3 Partitioning non-closed balls
Proposition 5 Let S be a subset of Ed, x0 ∈ bd(S) \ S a point such that S ∪ {x0} is
star-shaped w.r.t. x0, n ∈ {2, 3, 4, . . .}, and δ the dilatation with center x0 and factor
c > 1. Then there exists a decomposition

S = S1 ∪ S2 ∪ . . . ∪ Sn

of S such that
Si = δi−1 (S1) for i = 1, 2, . . . ,n .

Proof. It is sufficient to show the assertion for all intersections

SH = S ∩H

of S with open halflines H starting in x0, since δ maps H onto itself. We assume that
SH ⊆ E1, x0 = 0, and H = (0,∞) without loss of generality. SH is a bounded or an
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unbounded interval, i.e. SH = ∅, SH = (0, b), SH = (0, b], or SH = (0,∞). If SH is
empty then there is nothing to show. Otherwise we consider the decomposition

SH = SH
1 ∪ SH

2 ∪ . . . ∪ SH
n

with

SH
i =



−1⋃
k=−∞

[
b · cnk+i−1, b · cnk+i

)
if SH = (0, b) ,

−1⋃
k=−∞

(
b · cnk+i−1, b · cnk+i

]
if SH = (0, b] ,

∞⋃
k=−∞

(
cnk+i−1, cnk+i

]
if SH = (0,∞) .

A simple calculation shows that

SH
i = ci−1 · SH

1 = δi−1
(
SH

1

)
for i = 1, 2, . . . ,n and completes the proof. h

Of course, for every strictly convex set S ⊆ Ed, which is not closed, there exists a point
x0 ∈ bd(S) \ S as assumed in Proposition 5. Hence we obtain:

Corollary Every non-closed strictly convex set in Ed is n-divisible w.r.t. the group *d

of all similarities of Ed for n = 2, 3, 4, . . .. h

In the context of the present paper we formulate the following more special implication
concerning the divisibility of non-closed balls w.r.t. 7d:

Theorem 3 Let d ∈ {1, 2, 3, . . .}, n ∈ {2, 3, 4, . . .}, and let B be a non-closed ball in
Ed. Then B is n-divisible w.r.t. 7d. h

Let us close this paper with a remark on the structure of the decompositions of closed or
open balls in E1 considered in the proofs of Proposition 2 and Proposition 5. The balls
are partitioned into subsets mutually congruent via 71, any of the subsets consisting of
countably many connected components. The partitions given in this paper are optimal
in the following sense:

Proposition 6 Let B = S1 ∪ S2 ∪ . . . ∪ Sn be a decomposition of a closed or open ball
B ∈ E1 into n ≥ 2 subsets which are pairwise congruent via 71. Then all the sets Si

consist of infinitely many connected components.

Proof. We assume the contrary, i.e. the boundaries bd(Si) of the subsets Si w.r.t. the
topology of E1 are finite. Then the interiors of the sets Si consist of k open intervals,
where k ≥ 1 does not depend on i according to the congruence of the sets Si via 71.
Hence the ball B is decomposed into nk open intervals – the components of int(Si),
1 ≤ i ≤ n, – and those points of the boundaries of the sets Si which belong to B. The
nk intervals are separated by nk − 1 inner points of B. Consequently,

card

(
n⋃

i=1

(
bd(Si) ∩ B

))
=
{

nk + 1 if B is a closed interval,
nk − 1 if B is an open interval.

(3)
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On the other hand we have

n⋃
i=1

(
bd(Si) ∩ B

)
=

n⋃
i=1

(
bd(Si) ∩ Si

)
,

where the right union is disjoint. All the sets bd(Si) ∩ Si , 1 ≤ i ≤ n, are of the same
cardinality l, since the sets Si are congruent via 71. Thus we obtain

card

(
n⋃

i=1

(
bd(Si) ∩ B

))
= n l .

This contradiction to formula (3) proves Proposition 6. h

The author thanks E. Hertel for confronting him with the problem and for encouraging
him to write this paper.
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