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A simple method for solving the diophantine equation
Y2 = X4 + aX3 + bX2 + cX + d
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1 Introduction
We consider the diophantine equation

Y2 = f(X),

where f(X) is a polynomial of degree four with integer coefficients. For f(X) monic
and not a perfect square Masser [2] has shown that any integer solution (x, y) of the
above equation satisfies

|x| ≤ 26 H( f)3,

where H( f) denotes the maximum of the absolute values of the coefficients of f(X). As
far as we know, this bound is the best one for |x| that exists in the literature. It follows that
for small values of H( f) the integer solutions of Y2 = f(X) can be obtained by a direct

.

Die Frage Diophants nach den ganzzahligen Lösungen einer gegebenen algebraischen
Gleichung hat historisch immer wieder Anlass zu wichtigen Entwicklungsschritten in
der Zahlentheorie gegeben; das Fermat-Problem liefert dafür ein wohlbekanntes und
eindrückliches Beispiel. Das Fermat-Problem illustriert auch treffend die mathematik-
historische Erfahrung, dass die Behandlung diophantischer Probleme in der Regel
schwierig ist. Vor diesem Hintergrund ist es immer überraschend, wenn für spezielle
Gleichungen eine vollständige Antwort gefunden werden kann: Dimitrios Poulakis
beschreibt im vorliegenden Beitrag eine einfache Methode, die für eine ganze Klasse
von algebraischen Gleichungen sämtliche ganzzahligen Lösungen liefert. ust
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computer search. In the case where the discriminant of f(X) is not zero, Tzanakis [4]
has recently given a practical method for computing all integer solutions of Y2 = f(X).
This method relies on a lower bound for linear forms in elliptic logarithms. It is easily
applicable once one knows a Mordell-Weil basis for the elliptic curve associated with
the equation Y2 = f(X). Some interesting numerical examples are given in [4].

The purpose of this note is to describe a very simple and elementary method for com-
puting the integer solutions of Y2 = f(X) in the case where f(X) is monic and not
a perfect square. We give two quadratic polynomials depending on the coefficients of
f(X) with the property that their roots determine a region to which the x-coordinates
of the integer solutions (x, y) of Y2 = f(X) belong. From this the integer solutions of
Y2 = f(X) can be obtained by a direct computer search. More precisely we prove the
following result:

Theorem 1. Let a1, a2, a3, a4 be integers such that the polynomial f(X) = X4 +a1X3 +
a2X2 + a3X + a4 is not a perfect square. Let

Π1(X) = 16X2 + 8(a1 − 8a3 + 4a1a2− a3
1)X + 8a2− 2a2

1 + 1− 64a4 + 16a2
2 + a4

1− 8a2a2
1

and

Π2(X) = 16X2 + 8(a1 + 8a3− 4a1a2 + a3
1)X + 8a2− 2a2

1− 1 + 64a4− 16a2
2− a4

1 + 8a2a2
1.

For i = 1, 2 denote by πi1, πi2 the roots of the polynomial Πi(X). If πi1, πi2 are real,
we set Ii = [πi1, πi2] (or Ii = [πi2, πi1]); otherwise Ii = ∅. Then, if (x, y) is an integer
solution of y2 = f(x), one has x ∈ I1 ∪ I2 ∪ {x0}, where

x0 =
64a4 − 16a2

2 − a4
1 + 8a2a2

1

8(−8a3 + 4a1a2 − a3
1)

.

Remark. If a1 is odd, then it is easily seen that x0 is not an integer.

In practice, the region for x obtained from Theorem 1 is much smaller than the one
obtained from the inequality in [2]. Therefore, in numerous cases we do not actually
need a computer to carry out the necessary computations; see the numerical examples
in section 2. The examples (1) and (2) have been taken from [4]. It is apparent from
[4] that the solution of these equations by the method applied there requires extensive
computations.

2 Applications
In this section we solve some diophantine equations, using Theorem 1.

(1) Consider the equation

Y2 = f(X) = X4 − 8X2 + 8X + 1.

We have the quadratic polynomials

Π1(X) = 16X2 − 512X + 897 and Π2(X) = 8X2 + 512X − 1025.
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The zeros of Π1(X) lie in the open interval (1, 31) and the zeros of Π2(X) in (−34, 2).
Further, x0 = 15/8. Thus, if x, y are integers with y2 = f(x), then Theorem 1 gives
−33 ≤ x ≤ 31. On the other hand we have y2 ≡ x4 + 1 (mod 8). If x is odd, then
x ≡ ±1,±3 (mod 8) and we deduce y2 ≡ 2 (mod 8). Since this congruence has no
solution, we obtain a contradiction. Thus x is even. We check one by one the even
values from −33 to 31, and we obtain as the only possibilies x = 0, 2,−6. Therefore,
the only integer solutions of Y2 = f(X) are (x, y) = (0,±1), (2,±1), (−6,±31). Note
that the bound of [2] yields |x| ≤ 13312.

(2) Consider Fermat’s equation

Y2 = f(X) = X4 + 4X3 + 10X2 + 20X + 1

(see [3]). The zeros of the quadratic polynomials

Π1(X) = 16X2 − 480X + 561 and Π2(X) = 16X2 + 544X − 465

lie in the set (−34, 1) ∪ (1, 29). Further, x0 = 5/8. Let x, y be integers with y2 = f(x).
Then Theorem 1 implies −33 ≤ x ≤ 0 or 2 ≤ x ≤ 28. On the other hand we have y2 ≡
x4 + 4x3 + 1 (mod 5), whence it follows that x 6≡ 4( (mod 5). Thus −33 ≤ x ≤ 28 and
x 6= −31,−26,−21,−16,−11,−6, 1, 4, 9, 14, 19, 24. Checking the remaining values for
x one by one, we deduce that the only integer solutions of Y2 = f(X) are

(x, y) = (0,±1), (1,±6), (−3,±2), (−4,±9).

In this case the bound of [2] gives |x| ≤ 208000.

(3) The discriminant of the polynomial

f(X) = (X + 1)2(X2 + 15) = X4 + 2X3 + 16X2 + 30X + 15

is zero. Thus the method of [4] is not applicable to the equation Y2 = f(X). On the other
hand the bound of [2] gives |x| ≤ 702000. In order to apply Theorem 1, we consider
the quadratic polynomials

Π1(X) = 16X2 − 944X + 2761 and Π2(X) = 16X2 + 976X − 2521.

Their zeros lie in the interval (−64, 56) and x0 = 11/4. By Theorem 1, we have that
the integer solutions (x, y) of Y2 = f(X) satisfy −64 ≤ x ≤ 56. If x is even, then y
is odd and y2 ≡ 3 (mod 4), which is a contradiction. Thus x is odd. Suppose 3 divides
x. Then 3 divides y and we deduce that 9 divides 15 which is not true. So 3 does not
divide x. Similarly we deduce that 5 does not divide x. Let p be an odd prime divisor
of x. Then 15 is a quadratic residue modulo p. Since(

15
13

)
=
(

15
19

)
=
(

15
23

)
=
(

15
29

)
=
(

15
31

)
=
(

15
37

)
=
(

15
41

)
= −1,

it follows that the primes 13, 19, 23, 29, 31, 37 and 41 do not divide x. Hence

x ∈ {±1,±7,±11,±17,±43,±47,±49,±53,−59,−61}.

Checking the elements of this set one by one, we obtain that the only integer solutions
of Y2 = f(X) are (x, y) = (1,±8), (−1, 0), (7,±64), (−7,±48).
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3 Proof of Theorem 1
We shall use an argument that goes back to an idea of H.L. Montgomery [1, page 576].
Write

f(X) = (X2 + b1X + b2)2 + c0X + c1.

Equating coefficients of terms of same degree, we get

b1 =
a1

2
, b2 =

a2

2
− a2

1

8

and

c0 = a3 −
a1a2

2
+

a3
1

8
, c1 = a4 −

a2
2

4
− a4

1

64
+

a2a2
1

8
.

Putting
B(X) = X2 + b1X + b2 and C(X) = c0X + c1,

we have
f(X) = B(X)2 + C(X).

Since f(X) is not a perfect square, the linear polynomial C(X) is not zero.

Consider the quadratic polynomials

Π1(X) = 16B(X) + 1− 64C(X)

= 16X2 + 8(a1 − 8a3 + 4a1a2 − a3
1)X

+ 8a2 − 2a2
1 + 1− 64a4 + 16a2

2 + a4
1 − 8a2a2

1

and
Π2(X) = 16B(X)− 1 + 64C(X)

= 16X2 + 8(a1 + 8a3 − 4a1a2 + a3
1)X

+ 8a2 − 2a2
1 − 1 + 64a4 − 16a2

2 − a4
1 + 8a2a2

1.

For i = 1, 2 let πi1, πi2 be the roots of the polynomial Πi(X). If πi1, πi2 are real, set
Ii = [πi1, πi2] (or Ii = [πi2, πi1]); and Ii = ∅ otherwise. Then, if (x, y) is an integer
solution of y2 = f(x), one has

y2 = B(x)2 + C(x).

Suppose that x does not lie in I1∪ I2. Then Π1(x) > 0 and Π2(x) > 0, whence it follows
that

−16B(x) + 1 < 64C(x) < 16B(x) + 1.

Adding everywhere 64B(x)2, we get

(8B(x)− 1)2 < (8y)2 < (8B(x) + 1)2.

Since 8B(x) and y are integers, the above inequality implies y2 = B(x)2. Thus C(x) = 0.
The polynomial C(X) is not zero. If c0 = 0, then we get c1 = 0 and therefore C(X) is
zero, which is a contradiction. Thus c0 6= 0, and we obtain x = −c1/c0. The theorem
follows.
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