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0 Introduction
Certain recursive geometric processes sometimes become periodic. As a rule, periodici-
ties of this type reveal beautiful geometric configurations and often lead to remarkable
theorems.

Fig. 1

The aim of the present work is to put forward pictures and statements of this kind through
specific problems and their solutions and in this rather elementary way to call the reader’s

.

Der Inhalt von Schliessungssätzen der Geometrie, des Satzes von Desargues, des
Satzes von Pappus, des Satzes von Poncelet und von anderen, hat jeweils etwas
Geheimnisvolles an sich: Welche Magie erzwingt, dass sich eine nach komplizierten
Vorschriften gebildete Figur am Ende schliesst? Man staunt, man wundert sich. Die
Mathematik ist aufgerufen, die Ursachen zu ergründen und zu erklären, den Satz zu
beweisen. – András Hraskó bespricht in seinem Beitrag in elementarer Weise eine
Reihe derartiger Sätze – man könnte sie alle Zig-Zag-Sätze nennen –, die auf zunächst
verborgene Weise mit dem Poncelet-Theorem zusammenhängen. ust
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attention to the theorem of Poncelet, lying behind all of these periodic structures. In our
day this fascinating theorem has become fashionable again as is clearly demonstrated by
the number of excellent recent publications on the subject. The present work may serve
as an introduction to the study of these works.

In the first three sections three different types of problems are considered while Section
4 is devoted to the interrelation between them.

1 Zig-zags
Problem 1. (Generalization of the construction of the regular hexagon) (Fig. 1)
Given two circles KA and KB of radius ρ neither of which contains the centre of the
other, and the points A1 and B1 at a distance ρ from each other on the circles KA, KB

respectively. Construct the equilateral polygon A1B1A2B2 · · · according to the following
recursion which will be called the Zig-zag process:

1) Let An+1 be that point on KA which is at a distance ρ from Bn and which is
different from An. If no such point exists then put An+1 = An.

2) Let Bn+1 be that point on KB which is at a distance ρ from An and which is different
from Bn. If no such point exists then put Bn+1 = Bn.

Prove that A4 = A1!

Fig. 2

Problem 2. (Fig. 2)
Let KA be a given circle of radius ρ, the straight line KB, not going through the centre
of KA, and the points A1 and B1 on KA and KB respectively which are at a distance ρ
from each other.

Construct the equilateral polygon A1B1A2B2 · · · according to the Zig-zag process of the
previous problem.

Prove that A5 = A1!

These two problems are deduced from the general formulae to be discussed in Section
4. Problem 3 – or rather its generalization – is not a new one and has already been
thoroughly discussed in [17] (see also [18] and [19]).
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Fig. 3

Problem 3. (Fig. 3)
Given the straight lines KA and KB which intersect at an angle 36◦, and points A1

and B1 on KA and KB respectively. Construct the equilateral polygon A1B1A2B2 · · · of
arbitrary side length by means of the Zig-zag process.

Prove that A6 = A1!

Fig. 4

Solution to Problem 1.
In Fig. 4 instead of KA and KB only their centres OA, OB and the radii connecting them
with the polygon’s vertices are shown. All the segments, appearing in the figure are of
length ρ. One has to prove that the segment B3A1 is also of length ρ.

All the segments A1B1, OAA2, A3B2, B3OB are parallel to each other since the quadri-
laterals are all rhombi. Therefore, A1B1OBB3 is also a parallelogram and the side A1B3

together with the opposite side B1OB are of length ρ. h

In Fig. 4 a cube is clearly recognizable. A great many of elementary problems lead to
the same configuration.

Solution to Problem 2.
In Fig. 5 OA denotes the centre of the circle KA. All the segments shown on the
figure are of length ρ. The segments A1B1, OAA2, A3B2 are equal and parallel since
quadrilaterals A1B1A2OA, A2OAA3B2 are rhombi. Hence, the quadrilateral A1B1B2A3

is a parallelogram too and, therefore, A1A3 is parallel to the straight line KB. If one
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increases the indices in the proof of Problem 1 by 2, one arrives at the conclusion that
A3A5 is parallel to KB and, as a consequence, A5 does indeed coincide with A1. h

In Fig. 5 two half-cubes can now be recognized.

Fig. 5

Fig. 6

Solution to Problem 3.
This problem is a bit more difficult than the previous ones but its generalization is more
straightforward than that of those. Below, in discussing the “recurrence problem”, we
allow the straight lines KA and KB to cross at an arbitrary angle rather than at 36◦. We
choose here an approach different from that of [17] closely connected to the recent proofs
of the rather more difficult theorem of Poncelet ([10], [12], [20], [21]), although the proof
in [17] has the merit of revealing the polyhedron hidden behind the configuration.

In Fig. 6 part of the configuration, the portion A3B3A4B4 of the polygon, is seen. We
are to look for the transformation which maps the segment A3B3 onto A4B4.

Consider the reflections with respect to the perpendicular bisector t3 of segment A3A4

and the perpendicular bisector τ3 of B3B4. Under the first of these transformations A3B3

is taken to A4B3 while the second one accomplishes the transformation of A3B3 onto
A4B4. The desired transformation is, therefore, the composition of two reflections, which
is a rotation around the point of intersection of the two axes of reflection. The angle of
rotation is twice the angle of the axes t3, τ3 i.e. 2α.

In more general terms we can say that the segment An+1Bn+1 can be obtained from A1B1

by an A1B1 dependent transformation ϕn which is the composition of rotations around
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a series of points O1,O2, · · ·On, by the same angle 2α. The composition of rotations is
also a rotation, with a single exception: when the sum of the rotation angles is a multiple
of 360◦, the composition becomes a translation or the identity transformation.

In our case translation is out of the question. When A1 ∈ KA, B1 ∈ KB and the straight
lines KA, KB are not parallel, no translation of the segment A1B1 exists for which A1

and B1 remain on KA and KB respectively.

If, therefore, 2α ·n = k · 360◦, then ϕn is the identity: An+1 = A1, Bn+1 = B1. The case
α = 36◦ assumed in Problem 3 corresponds to n = 5, k = 1.

If, on the other hand, 2α · n 6= k · 360◦ then ϕn is a generic rotation. Since it has only
a single fixed point, ϕn(A1B1) must be different from AnBn. h

There exists a general theorem hidden in the background of the three problems discussed
so far:

The Zig-zag theorem. Let both the objects KA and KB be either a circle or a straight
line in space. A fixed length ρ is also given and it is assumed that neither object has a
point from which all the points of the other are at a distance ρ1). If a Zig-zag process,
starting from some given segment A1B1 of length ρ (A1 ∈ KA, B1 ∈ KB) is of periodicity
n (i.e. Bn+1 = B1), then any other initial segment of the same length ρ gives rise to a
process of the same periodicity n.

This theorem was discovered by Black W.L., Howland H.C. and Howland B. for the
case when both objects are circles, and in their 1974 paper [15] they gave an elegant
analytic proof of it. Since then several different proofs have been published ([20], [23]).
However, as stated by Black and the Howlands, this beautiful theorem is of existential
character, since no hint is given of the conditions the circles and the length ρ must satisfy
in order to give rise to an n-step periodic Zig-zag configuration (which from now on we
will denote by Zn). The aim of the present work is to make progress toward the detailed
characterization of Zn-configurations.

Let us introduce the simpler notation K, L for the objects KA, KB. For simplicity’s sake
we confine ourselves to the case when K and L are circles which lie in the same plane.
In this case the relevant parameters of the configuration are the radii r and R of K and L,
the distance d between their centres and the length ρ of the “zig” (and “zag” of course).
In this particular case the Zig-zag configuration will be denoted by Z(r,R, d, ρ).

One may suspect that the geometrical condition of n-step periodicity must have an
analytic counterpart, a function zn of four variables, perhaps a polynomial, which vanishes
iff the configuration is Zn:

zn(r,R, d, ρ) = 0⇐⇒ Z(r,R, d, ρ) form a Zn configuration.

If one of the objects, say L, is a straight line, then the system is defined by the radius r
of K, the distance ∆ of its centre from L and, of course, ρ. This configuration will be

1) This condition serves to ensure the uniqueness of the Zig-zag process.
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denoted by Z′(r,∆, ρ). In this case the function z′n the zeros of which correspond to the
n-step periodicity of the configuration depends only on three variables.

The rather long route to the functions zn, z′n will be described in Section 4. They turn
out to be polynomials indeed. The configurations of Problem 1 and 2 originate in the
explicit form of these polynomials.

2 Polygons inscribed in a circle whose midpoints are also on some circle
Problem 4. Given the circles K and L on the plane, construct

a) the triangle (Fig. 7)

b) the quadrangle the vertices and side bisectors of which belong to K and L respec-
tively.

Fig. 7

Solution to Problem 4a). (Fig. 8)
The midpoints FA,FB ,FC of the sides of the triangle ABC constitute a triangle homothetic
to ABC. The ratio of dilatation is 1/2, the centre of dilatation is the common centre
of gravity S of the triangles. A dilatation with ratio (−1/2) (i.e. a composition of a
contraction with ratio 1/2 followed by a central reflection) centered at S maps the
triangle ABC onto FAFBFC , the circle K onto L and the centre OK of K onto the centre
OL of L.

Thus one deduces that the constructibility of the triangle requires the radius of L to be
half the radius of K. If this condition is fulfilled then, as will be immediately apparent,
any chord AB of K the midpoint FC of which lies on L is part of an appropriate triangle.

Indeed, starting from given circles L and K, the point S can be constructed as the
trisection point of the segment OLOK , lying nearer to OL . The dilatation of ratio (−2)
centered at S maps L onto K. Let FC be the image of C under this transformation. Point
S is necessarily the centre of gravity of the triangle ABC since it is a trisection point of
the median CFC . If one now contracts K in the ratio (−1/2) through S, then one arrives
at the circle L and the points A,B are taken to the midpoints FA,FB both lying on L.

Solution to Problem 4b):
As a first step the conditions for constructibility will be clarified. These are based on the
following well-known statements:



Elem. Math. 55 (2000) 51

Fig. 8

Lemma 1. Midpoints of the sides of a general quadrilateral are vertices of a parallel-
ogram the sides of which are parallel to the diagonals of the quadrilateral.

Lemma 2. The sum of the squares of the sides of any parallelogram equals the sum of
the squares of its diagonals.

Fig. 9

Lemma 1 permits us to conclude (Fig. 9) that the midpoints of the quadrilateral ABCD we
are looking for constitute a rectangle, since a rectangle is the only parallelogram which
can be inscribed in a circle. It is also clear that diagonals AC and BD are perpendicular
to each other. From this we deduce that APB 6 = 90◦ and the reverse of Thales’-theorem
ensures that AFA = FAP.

Now we assert that the midpoint of the segment OK P is just OL . For the proof, in
addition to the rectangle FAFBFCFD, we take into consideration the parallelogram of
the midpoints FY , FC , FX , FA of the quadrilateral ACDB (twisted on the figure), as
well as the rectangle OK FYPFX bounded by the perpendicular chords AC, BD and their
perpendicular bisectors. Now we prove that all of these quadrilaterals have OL as their
centre. For the rectangle FAFBFCFD this follows because its centre is the same as that of
the circle circumscribed around it, for the parallelogram FYFCFXFA because its diagonal
FCFA is a diagonal of the previous rectangle too and, finally, for the rectangle OK FYPFX

since it shares the diagonal FXFY with the previous parallelogram.
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Let us now apply Lemma 2 to the parallelogram which has OK P as one of its diagonals
and FAOL as half of the other:

2FAP
2

+ 2FAOK
2

= OKP
2

+ 4OLFA
2
.

Here OLFA = R, OKP = 2d and in the right-angled triangle AFAOK the relation

FAOK
2

= r2 − AFA
2

is valid. We have, therefore,

2FAP
2

+ 2r2 − 2AFA
2

= 4d2 + 4R2. (1)

We already know that FAP = AFA, from which the exact condition for constructibility
is obtained:

2(R2 + d2) = r2. (2)

The construction itself is very simple once condition (2) is satisfied. We assert that any
chord AB of K whose midpoint FA belongs to the circle L may be completed up to an
appropriate quadrilateral provided one minor further criterion is fulfilled, namely L must
not be a circle of radius r/2, containing the centre of K.

We choose a point P for which the midpoint of the segment OKP coincides with OL .
The construction then consists in simply drawing, from points A and B, the chords AC,
BD of K through P. Our supplementary condition is necessary only to prevent P from
lying on K thus making the procedure possible, with points A, B, C, D all different. It
remaines only to prove that the midpoints of the sides of the quadrilateral obtained are
on the circle L.

Equations (1) and (2) are now valid by construction. Hence FAP = AFA and APB 6 =
90◦. Since the perpendicular bisectors of AP, PC and AC contain the points FA, FB and
OK respectively, the midpoint OL of OKP lies on the perpendicular bisector of FAFC

which is parallel to AC. The point FB , therefore, belongs to L as required. The proof
for the other midpoints is analogous.

These problems also have an infinite construction process which we shall call the Ponzag
process (PONcelet + zig-ZAG) in their background. It is based on the circle K and object
L (which may be either a circle or a straight line) and starts from the chord A1A2 whose
bisector F1 lies on L. The sequence of points {An} is generated by repeated application
of the following construction:

Let An be the point of intersection of two circles the first of which is K and the second is
the image of L under the dilatation of ratio 2 centered at An−1. Choose for An the point
of intersection which is different from An−2. If no such point exists then put An = An−2.

The midpoint Fn−2 of the segment An−2An−1 belongs to L, hence An−2 will certainly
be an intersection point. Therefore, the construction cannot fail due to the absence of
any intersection point. The uniqueness of the process is ensured if the doubly magnified
image of L does not coincide with K, i.e. if the centre of K does not lie on L and the
latter’s radius is not just half of the radius of the former.

The questions stated in Problem 4 now reduce to the selection of those points A1 which
give rise to 3 or 4-step periodic processes. As it turns out the answer is similar to the
Zig-zag theorem.
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The Ponzag theorem. Let K be a circle and L an object (a circle or a straight line)
which does not contain the centre of K. If the Ponzag process based on them is n-
periodic when started from some given chord, then it remains of periodicity n for any
other choice of the initial chord.

Geometers of the XIX. century would have formulated the theorem somewhat differently:
if there exists an n-gon whose vertices lie on the circle K and the midpoints of the sides
lie on another circle (or straight line) L, then an infinite number of such n-gons exist.2)

The Ponzag theorem will be proved in Section 4, where it will be traced back to the
Zig-zag theorem.

Let us now express our results in algebraic form. A Ponzag configuration of two circles
is characterized by the radii r, R of the circles K and L and the distance d between
their centres. The corresponding Ponzag configuration will be denoted by PZ(r,R, d).
We have already found polynomials pz3, pz4, satisfying periodicity

pz3(r,R, d) = r − 2R

pz4(r,R, d) = r2 − 2(R2 + d2).

Notice that when L is a straight line then the periodicity is necessarily 4-step because
if A1A2 is a chord of K the midpoint of which lies on L, then parallels to L through
A1 and A2 cut out of K a trapezium the median of which is just L. The diagonals of
this trapezium together with its sides form a twisted Ponzag quadrilateral (see the dotted
quadrilateral on Fig. 14).

3 Polygons which have both inscribed and circumscribed circles

Problems 5a) and 5b) below are classic having already been dealt with by Euler. There-
fore, in this section, we will concentrate mainly on history rather than giving proofs. This
is all the more justifiable since in the next section new proofs for these old problems
will be proposed.

Fig. 10

2) I failed to find any reference to the case n > 3.
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Problem 5. Let K and L be two circles in a plane. Construct

a) the triangle (Fig. 10)

b) the quadrangle, the vertices of which lie on K and the sides of which are tangent
to L.

It is not difficult to establish the recursive process (Poncelet construction) suitable to this
problem. If we start from chord A1A2 of K tangent to L, then the sequence of points
{An} is obtained by the repeated application of the following elementary step:

Choose An to be the point of intersection of K with the tangent to L which starts from
An−1; if possible avoid the choice of An−1 for An and An−2An−1 for the tangent from
An−1.

The question is how to select those “tangential chords” A1A2 starting from which the
sequence {An} becomes 3- or 4-step periodic.

The condition for constructibility of a triangle follows from a theorem due to Euler which
states that the radii R and r of the circumscribed and inscribed circles of a triangle and
the distance d between their centres satisfy the relation

R2 − d2 = 2Rr.

A beautiful proof of this theorem is found in the work of Coxeter and Greitzer [Theorem
2.1.2] referred to above.

Problem 5, however, does not require the circle L to be the inscribed circle, it may be an
escribed one as well (Fig. 11). A minor modification of the proof leads to the formula

|R2 − d2| = 2Rr (3)

which encompasses the general case.

Fig. 11

It is also true that if this relation is taken for granted then any “tangential chord” may be
completed up to a triangle which is both inscribed into K and tangent to L. The proof
of this statement will be given in the next section from a rather different angle.

Euler himself made efforts to generalize his formula from triangles to quadrangles but
without success. The desired relation was finally found in 1797 by his former pupil Fuss
in Petersburg ([1], p. 33 and [2]):

2r2(R2 + d2) = (R2 − d2)2. (4)
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An elementary proof of this formula can be found in the book of Dörrie [9]. To the
surprise of the present author the formula of Fuss does not cover a certain class of
twisted quadrangles (see Fig. 14). In Section 4 the formula (4) will be derived and
properly extended. It will also be shown that whenever it is satisfied, any tangential
chord of K may be completed up to a quadrangle inscribed into K and tangent to L.
For polygons with an increasing number of vertices the problem becomes more and more
difficult: for n-gons of n = 5, 6, 7, 8 Fuss was able to give formulae only for the special
case when the polygons were symmetric with respect to the line of centres of the circles
([3], [7]).
The French engineer-mathematician J.V. Poncelet in 1817 [4] published a striking theo-
rem which in the terminology of the present work may be formulated as follows: Let K
and L be two nondegenerate conics which are not tangent to each other. If a tangential
chord exists which gives rise to an n-step periodic Poncelet process then the process
remains n-step periodic for any initial tangential chord.
The proof of the theorem is beyond the scope of the present work. The interested reader is
referred to the works of Poncelet ([5], [6]) where a purely geometric proof, leading to an
even more general theorem, is given. The same route in more elegant steps is described
by Lebesgue in [14] and also by Berger, in his readily available well illustrated book
[16], published in several languages.
Jacobi found a rather peculiar proof of the theorem by relating it to an integration
problem. His original writings [7] permit us to follow his novel approach but the essence
of his proof is easier to understand via the short article of Shen [22].
It was Cayley who, also working with integrals like Jacobi, discovered those polynomials
whose zeros express periodicity. The polynomials of Cayley depend on the coefficients
in the equations of the conics K and L. His proof was translated by Lebesgue [14] into
a geometric and by Griffith and Harris [10] into a modern algebraic-geometric language.
More recently new results concerning Poncelet’s theorem were communicated by Barth
and Michel [20]. In particular, they determined how many elements in a pencil of conics
form Poncelet configurations with a given conic. They were also able to identify those
pairs of conics the first of which circumscribes the n-gon tangent to the second while,
at the same time, the second circumscribes the m-gon tangent to the first.
We now formulate the closure theorem of Cayley which will be employed in the next
section. As will be seen, Problems 1, 2 originate in this theorem.

Let the conics K and L be characterized by their matrices K , Λ. Form the matrix tK +Λ.
The square root of the determinant of this matrix may be expanded into a power series
in t: √

det(tK + Λ) = A0 + A1t + A2t2 + · · ·
The Poncelet construction will be n-periodic iff∣∣∣∣∣∣

A2 · · · Am+1

· · · · · · · · ·
Am+1 · · · A2m

∣∣∣∣∣∣ = 0 if n = 2m + 1 or

∣∣∣∣∣∣
A3 · · · Am+1

· · · · · · · · ·
Am+1 · · · A2m−1

∣∣∣∣∣∣ = 0 if n = 2m.

In the spirit of the present work the above determinants should be denoted by pn. They
vanish whenever the configuration is Pn.
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4 Connections
In this section the equivalence of the Zig-zag, the Ponzag and the Poncelet theorems will
be demonstrated. Recently Barth and Bauer published an extensive study of the subject.
They were able to relate several Poncelet-type theorems to a common origin [22] which
is a spatial version of the Poncelet theorem discovered by Weyr ([12], [24]). Below we
make an attempt to present the interconnections of the aforementioned three theorems
as transparently as possible, using a rather more elementary approach. The equivalence
will be established in the following order:

Zig-zag =⇒ Ponzag =⇒ Poncelet =⇒ Zig-zag.

Ponzag follows from Zig-zag.

Fig. 12

Proof. Consider Fig. 7 from Problem 4. Reflect the centre OK of the circle K centrally
with respect to the points of L (Fig. 12). The image-manifold L′ will be a circle or a
straight line, depending on what L is. Alternatively, L′ may also be considered as the
image of L under the dilatation of ratio 2 centered at OK .

Let the images of OK under central reflection with respect to the midpoints F1, F2, F3

be the points B1, B2, B3 respectively. Since the quadrilateral OK AiBiAi+1 is a rhombus,
A1B1A2B2A3B3 · · · is a periodic zig-zag between K and L′. It may be seen that our
method is quite a general one: by a twofold dilatation of L centered at OK we have
managed to relate a Ponzag configuration, belonging to K and L, to a Zig-zag con-
figuration between K and L′ in such a manner that the PZn configurations correspond
precisely to the Zn configurations. h

Poncelet follows from Ponzag.

We will show that the two-circle version of the Poncelet theorem follows from the
Ponzag theorem; our proof will not cover the general case. This is not a serious limitation
however since the general theorem of Poncelet follows from this special version – in his
proof Poncelet himself followed the same route.

Proof. Consider Fig. 10 from Problem 5. Perform an inversion with respect to the circle
L (Fig. 13). The image of K under this inversion will be the figure K′ which is either
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Fig. 13

a circle or a straight line. We assert that the image of the point A1 will be the midpoint
F1 of the segment, connecting the contact points B2 and B1 of the tangents A1A2 and
A1A3. This follows from the symmetry which forces the points OL , F1, A1 to lie on a
common straight line and the triangles OL A1B1 and OLB1F1 to be similar since they are
of right angle and have at OL a common angle. Hence OL A1/ OLB1 = OLB1/ OLF1

i.e. OL A1 ·OLF1 = r2.

Now it is seen that the inversion of the circle K with respect to L permits us to associate
a Ponzag configuration between K and L′ to a Poncelet configuration belonging to the
circles K and L, and moreover, the configurations PZn correspond exactly to the Pn

configuration. h

In order to illustrate this correspondence in an elementary way we now compute, from the
polynomials pz3 and pz4, the polynomials p3, p4, i.e. the relations occurring in Euler’s
and Fuss’ theorems. As a preliminary step we have to express in terms of R and d
the radius R′ of K′ and the distance d′ of its centre from the centre of inversion OL .
This is not a difficult task since, owing to symmetry, we may confine ourselves to the
determination of the transformed positions of those points of K′ only which lie on the
line through the centres of the circles:

R′ =
1
2

∣∣∣∣ r2

d − R
− r2

d + R

∣∣∣∣ = r2

∣∣∣∣ R
d2 − R2

∣∣∣∣ ,
d′ =

1
2

∣∣∣∣ r2

d − R
+

r2

d + R

∣∣∣∣ = r2

∣∣∣∣ d
d2 − R2

∣∣∣∣ .
If these expressions are now substituted into pz3 and pz4, then we obtain formulae
equivalent to (3) and (4). One must, however, take into account the fact that K′ may
turn out a straight line as well and this is just a 4-step Ponzag configuration (Fig. 14).
This happens when K passes through the centre of L i.e. when d = R. In this case
twisted quadrilaterals akin to the zig-zag configuration of Problem 2 arise whose sides
are tangential chords. The polynomials promised earlier are:

p3(r,R, d) = (R2 − d2)2 − 4R2r2 and

p4(r,R, d) = (R− d)
[
(R2 − d2)2 − 2r(R2 + d2)

]
.
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Fig. 14

Zig-zag follows from Poncelet.

Consider Fig. 1, from Problem 1. According to the Zig-zag process, the circles of radius
ρ around B1, B2 and B3 intersect the circle KA at the pairs of points (A1,A2), (A2,A3)
and (A3,A1). In Fig. 15, in addition to B1, B2, B3, a further point B on the circle KB

was selected, around which a circle of radius ρ was drawn. The points of intersection of
this circle with KA were connected by a straight line.

Fig. 15

Imagine now that B moves along KB. If all the straight lines corresponding to different
positions of B were tangent to some conics K′, then the Zig-zag construction algorithm
between KA and KB would be equivalent to the Poncelet construction between KA and
K′.

The existence of K′ — and thereby the reduction of the Zig-zag theorem to the Poncelet
theorem — will be demonstrated for the general spatial configuration i.e. when the circles
KA, KB are not confined to a common plane.
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The following lemma will be needed:

Lemma. Let Γ be a cone in euclidean space the vertex of which is O. Consider the
set } of planes perpendicular to the generators of Γ and having the arbitrarily chosen
point P common. Then } will be the set of tangent planes to some cone Γ′ with vertex
P.

Here we assume the validity of this lemma without proof but notice that its content is
nothing but reciprocation ([15] Chapter 6)3).

Consider the sphere GB of radius ρ around the point B of KB and some sphere G which
contains the circle KA (Fig. 16). Consider also the intersection plane of GB and G (rather
than the straight line connecting the points of intersection of GB and KA) which, owing
to its similarity to the notion of the radical axis, will be called the radical plane. Denote
by P the point of intersection of this plane with the symmetry axis t of the circle KB

(Fig. 17). The existence of a point of intersection is guaranteed if G is chosen so that
its centre O lies outside the plane of KB. The point P has the same power with respect
to G and all the circles of radius ρ whose centres are on KB. Hence, for any choice of
the point B on KB the intersection plane of the spheres GB and G will necessarily pass
through P.

Fig. 16

On the other hand, the radical plane of GB and G is nothing but the plane through P
orthogonal to the straight line OB. If now we apply our lemma to the cone of vertex O
and base line KB on the one hand and the point P on the other, then we arrive at the
promised conic K′ in the plane of KA.

At first sight the proof seems to fail when only one of the objects KA, KB is a circle.
When, for example, KA is a straight line, then the lines connecting the points of intersec-
tion of the spheres GB of radii ρ around the points of KB with KA, always degenerate into
the straight line KA itself. But it remains possible to apply an inversion with respect to a

3) Let Σ be any plane, not containing O. A map φ can be defined which makes the points of Σ correspond
to lines of the same plane: if Q is any point of Σ then let φ(Q) be the intersection line of Σ with the
plane, passing through P and perpendicular to OQ.
It can be proved that this map is the reciprocation with respect to a, possibly imaginary, circle. This circle
is the intersection line of Σ with the Thales sphere of segment OP.
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Fig. 17

sphere orthogonal to all the spheres GB under which KA transforms into a circle, while
the spheres of radius ρ mentioned above remain unchanged. After this transformation
has been performed the previous argument becomes applicable again.

What happens when both KA and KB are straight lines? Even if they are situated in
space this is a much simpler problem than the theorem of Poncelet so there is no reason
to trace it back to the latter. The planar case has already been thoroughly discussed in
Problem 3. The spatial version turns out to be a simple corollary to it4).

The argument above proves that to every Zig-zag configuration there corresponds some
Poncelet configuration. Since the closure conditions for the latter have already been
clarified by Cayley it becomes – in principle – possible to write down the closure
conditions of the Zig-zag configurations too. I computed, with the aid of the Mathematica
software, the corresponding low n polynomials for the planar configuration of the circles.
The first three polynomials are5):

z2(r,R, d, ρ) = d2 + ρ2 − r2 − R2

z3(r,R, d, ρ) = (d2ρ2 − r2R2)2 − (d2 + ρ2 − r2 − R2)2r2R2

z4(r,R, d, ρ) = (dρ− rR) ·
{

2(d2ρ2 − r2R2)2 − (d2ρ2 + r2R2)(d2 + ρ2 − r2 − R2)2
}
.

For the planar case of a circle and a straight line the following polynomials are obtained:

z′2(r,∆, ρ) = ∆

z′3(r,∆, ρ) = (r2 − ρ2)2 − 4r2∆2

z′4(r,∆, ρ) = (r − ρ) ·
{

(r2 − ρ2)2 −∆2(r2 + ρ2)
}
.

These formulae served as the starting point for the first two problems.

The explicit forms of the lowest order polynomials z2, z3, z4 betray unexpected sym-
metries which go far beyond the natural symmetry with respect to the interchange of

4) To show this, one only has to project the whole configuration onto a plane parallel to both lines. The
“zigs” remain equal after this projection and a planar zig-zag configuration is obtained.

5) A 2-step periodic process is 4-step periodic too. Therefore, for the polynomials derived from Cayley’s
formula z2|z4. Our z4 and z′4 are primitive Zig-zag polynomials in the sense that the corresponding second
order polynomials have already been factored out of them.



Elem. Math. 55 (2000) 61

the radii r and R of the circles. However, there seems to be no compelling reason for
symmetry with respect to d and ρ. It is even more surprising that for even periodicities
the pair r,R is interchangeable with the pair d, ρ. These observations based on the lowest
order polynomials turn out to be generally valid and may be summarized in the following
theorems:

First duality theorem (d⇐⇒ ρ).
If in a planar Zig-zag configuration of periodicity n we retain the radii of the circles but
for the new distance between their centres choose the length of the “zag”, and for the
new “zag” the original distance between the centres, then the new configuration remains
of periodicity n.

Second duality theorem (r ⇐⇒ ρ, R⇐⇒ d).
Given a planar Zig-zag configuration of periodicity n, if we simultaneously interchange
the radius of one of the circles and the length of the zag on the one hand, and the radius
of the other circle with the distance between the centres on the other, then for even n
we obtain an n-periodic and for odd n a 2n-periodic configuration.

Note added in proof. For the proof of the above duality theorems and the generalization
of the Zig-zag Theorem to Euclidean, spherical and hyperbolic n-spaces see [29]. After
the present article was accomplished Prof. H. Stachel drew my attention to the important
papers [25], [26], [27], [28]. In particular, the Zig-zag Theorem for two coplanar circles
was first published by O. Bottema in Ref [25].
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