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On the Equation xy = yx
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Yaakov S. Kupitz wurde 1950 in Israel geboren. Er studierte Mathematik an der He-
brew University in Jerusalem, wo er auch als Schüler von Professor Micha A. Perles
auf dem Gebiet der kombinatorischen Geometrie promovierte. Herr Kupitz besuchte
zahlreiche diesem Gebiet gewidmete Spezialtagungen und verbrachte einen längeren
Forschungsaufenthalt an der Universität in Aarhus (Dänemark). Zur Zeit unterrichtet
er Mathematik an der Hebrew University in Jerusalem. Seine Forschungsinteressen
ausserhalb der Mathematik beziehen sich auf die Quellen der antiken hebräischen
Sprache und das Alte Testament.

Horst Martini wurde 1954 in Grossröhrsdorf bei Dresden geboren. Er studierte Lehr-
amt für Mathematik und Geographie in Dresden, wo er 1984 auch seine Doktorar-
beit im Fach Geometrie verteidigte. Nach der Habilitation an der Friedrich-Schiller-
Universität in Jena zu einem Thema aus der Konvexgeometrie wurde er 1989 zum
o. Hochschuldozenten für Geometrie in Dresden berufen. Gastaufenthalte (auch als
Humboldt-Stipendiat) nach der Wende führten ihn u.a. nach Trier und Augsburg,
und 1993 nahm er den Ruf auf eine C4-Professur für Geometrie an die Techni-
sche Universität Chemnitz an. Die Publikationen von Herrn Martini sind vor allem
der klassischen Geometrie und der Konvexgeometrie zuzuordnen. In seiner Freizeit
befasst er sich u.a. mit Musik (Klassik, Blues,. . .) und Geographie (entsprechende
Reisen, ausgedehnte Wanderungen).

1 Introduction
The equation xy = yx, x, y > 0 , seems to be abandoned in the literature, except for
a remote hebrew journal [2] (but see our remarks at the end of this introduction). It is
the aim here to give it due treatment.

.

Die wohlbekannte Kommutativität der Addition und der Multiplikation reeller Zahlen
führt auf die Frage nach der Symmetrie der sieben Grundrechenarten Addition, Subtrak-
tion, Multiplikation, Division, Potenzieren, Radizieren, Logarithmieren. Mit anderen
Worten stellt sich die Frage: Wie heissen alle Lösungen der Gleichung x ◦ y = y ◦ x,
wobei ◦ eine der sieben Grundrechenarten bedeutet? Im Falle der Addition und der
Multiplikation erfüllen wegen der Kommutativität alle reellen x, y die obige Gleichung,
im Falle der Subtraktion ergibt sich nur die triviale Lösung x = y, und im Falle der
Division erhält man die Lösungen x = ±y (x, y 6= 0). Im vorliegenden Artikel un-
tersuchen nun die Autoren die entsprechende Problematik im Falle des Potenzierens.
Dabei bestimmen sie insbesondere auch alle positiven, ganzzahligen und rationalen
Lösungen der Gleichung xy = yx. jk
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At first glance it is not clear for which y > 0 there is a non-trivial solution to the
equation xy = yx, x, y > 0, i.e., a value x 6= y, x > 0, such that (x, y) is a solution.
This is discussed in paragraph 1, where the set of non-trivial solutions turns out to be
punctured at (x, y) = (e, e).

This point turns out to be the accumulation point of the set of rational non-trivial solutions
of the equation xy = yx, x, y > 0 (paragraph 2) and a double (singular) point of the curve
whose cartesian equation is xy = yx (paragraph 3).

After finishing this paper, [1] came to our notice, in which an interesting historical
discussion on the equation xy = yx, x, y > 0, is given. From this we learn that already
L. Euler treated it, and that he discovered the parametric representation (4) given below,
from which he drew the rational solutions given here by (5). He also knew the two
asymptotes (x = 1 and y = 1) to the curve. In a letter to Goldbach, also Daniel Bernoulli
announces that he found the rational solutions. In [4], E. J. Moulton gives a complete
discussion of the curve defined by xy = yx, x, y > 0, including the results of Proposition
1 below (without giving an explicit formulation) and a figure similar to our Figure 2.
But the present discussion is superior to Moulton’s. With much industry R. C. Archibald
(in [1]) finds many works which deal with the equation xy = yx, x, y > 0, and he gives
references to all of them (until 1921). We were not able to find later or recent works
dealing with this equation. However, although we did not check the complete literature
with the help of Math. Reviews, our impression is that our Theorem 1 (characterization
of the rational solutions) is new and that on the whole it gives a complete, clear treatment
of the equation xy = yx, while other works deal only with special aspects of it.

2 Non-trivial solutions of xy = yx

In order to avoid later confusion it is preferable to deal with the equation xy = yx, x, y >
0, in the form

tm = mt, t,m > 0 , (1)

where m is a “parameter” and t is the “unknown”.

Proposition 1 There is a non-trivial solution t (6= m) to the equation (1) if and only if
1 < m 6= e, and for such an m the solution is unique.

Proof. Put u(t) = ln t
t , t > 0, and by taking logarithms in both sides of (1) it is readily

seen that (1) is equivalent to

u(t) = u(m), t > 0 , (2)

where m > 0 is a parameter.

The number of non-trivial solutions to (2) can be expressed in terms of the pre-image
set of u(m) under u:

#( solutions t 6= m to (2)) = #(u−1(u(m)))− 1 (3)

(where u−1(s) denotes the pre-image set of s under u).
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Since u′(t) =
1
t ·t−ln t

t2 = 1−ln t
t2 , u increases on (0, e], attains its maximal value u(e) = 1

e
at t = e, and decreases on [e,∞). As

lim u(t) =
{

0 for t −→∞,
−∞ for t ↓ 0,

the lines s = 0 and t = 0 are horizontal and vertical asymptotes to the graph s = u(t)
(Figure 1), respectively.

Thus

#(u−1(s)) =


0 if 1

e < s,
1 if s ≤ 0 or = 1

e ,
2 if 0 < s < 1

e

and, correspondingly,

#(u−1(u(m))) =

{ 0 if m ≤ 0,
1 if 0 < m ≤ 1 or m = e,
2 if 1 < m 6= e.

Conclusion by (3). h

The roles of m and t in Proposition 1 are interchangeable. Hence Proposition 1 applied
to xy = yx (where (m, t) −→ (x, y)) implies that for 1 < x 6= e there is a unique
y, 1 < y 6= e, such that (x, y) is a non-trivial solution to xy = yx, x, y > 0. This
defines a surjection x −→ ϕ(x) from (1,∞)\{e} onto itself. Here the roles of x, y are
interchangeable; hence the graph y = ϕ(x) is reflection symmetric around the line y = x,
i.e., ϕ(ϕ(x)) = x (involution).

Inspection of the graph s = u(t) (Figure 1) shows that as m increases on (1, e) the corre-
sponding solution t 6= m of (1) decreases on (e,∞), and vice versa. Hence ϕ decreases
strictly on (1,∞)\{e}. Similar considerations show that lim

x↓1
ϕ(x) =∞, lim

x→∞
ϕ(x) = 1

and lim
x→e

ϕ(x) = e.

The last limit allows to define ϕ continuously at x = e by ϕ(e) = e. Since 24 = 16 = 42,
ϕ(2) = 4 and ϕ(4) = 2. The curve y = ϕ(x) is depicted in Figure 2.
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Proposition 2 The only non-trivial integer solutions to the equation xy = yx, x, y > 0,
are (2, 4) and (4, 2).

Proof. As 2 is the only integer in (1, e] and ϕ(2) = 4, (2, 4) is the only integer point on
the graph y = ϕ(x) for 1 < x ≤ e. By symmetry (4, 2) is the only integer point on this
graph for e ≤ x <∞. h

3 Rational solutions of the equation xy = yx

Let (x, y) be a non-trivial solution of the equation xy = yx, x, y > 0, and put y = px.
Then p 6= 1, p > 0, and xy = yx can be written in the forms xpx = (px)x or (xx)p = px ·xx

or (xx)p−1 = (xp−1)x = px, i.e., we get xp−1 = p or, equivalently,

x = p
1

p−1 .

Put h = 1
p−1 , h ∈ R\[−1, 0] (since p 6= 1, p > 0), i.e., p − 1 = 1

h , p = 1 + 1
h and

x = (1 + 1
h )h. As y = px, y = (1 + 1

h )(1 + 1
h )h = (1 + 1

h )h+1. Thus

(x, y) =

((
1 +

1
h

)h

,

(
1 +

1
h

)h+1
)
, (4)

h ∈ R\[−1, 0], is a parametric representation of the non-trivial solutions of xy =
yx, x, y > 0. Note that, as h −→∞, (x, y) −→ (e, e). For n ∈ Z\{−1, 0}

(x, y) =

((
1 +

1
n

)n

,

(
1 +

1
n

)n+1
)

(5)

is a non-trivial rational solution of the equation xy = yx, x, y > 0.
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Theorem 1 If (x, y) is a non-trivial rational solution of xy = yx, x, y > 0, then it is of
the form (5) for some n ∈ Z\{−1, 0}.

Proof. Since (1− 1
k+1 )−(k+1)+1 =

( k
k+1

)−k
=
( k+1

k

)k
=
(
1 + 1

k

)k
for k ∈ Z\{−1, 0},

it suffices to consider the case y > x and to prove that in this case (x, y) is of the
form (5) for some n ∈ N. So assume that (x, y) is a rational solution of xy = yx with
y > x > 0. Then p = y

x > 1 is rational and h = 1
p−1 is a positive rational number. Let

h = n
α , where n, α ∈ N and (n, α) = 1 (here (k , l) denotes the largest common divisor

of k and l). Then by (4)

x =
(

1 +
1
h

)h

=
(

1 +
α

n

) n
α

=
(

n + α

n

) n
α

.

Let x = u
v , where u, v ∈ N and (u, v) = 1. Then

( n+α
n

) n
α = x = u

v , yielding
( n+α

n

)n =( u
v

)α
and hence

(n + α)n

nn =
uα

vα
. (6)

Since (n, α) = 1, (n + α,n) = 1 and ((n + α)n,nn) = 1. Similarly, since (u, v) =
1, (uα, vα) = 1.

It follows that both sides of (6) are the reduced form of the same rational number; hence
(by unicity of the reduced form)

nn = vα and (n + α)n = uα . (7)

Lemma 1 Let a, b, r, s ∈ N be such that ab = rs. Assume (b, s) = 1. Then a = ts for
some t ∈ N.

Proof. It suffices to show that if p is a prime factor of a of multiplicity k (i.e., pk | a
and pk+1 - a), then s | k . Since the multiplicity of p in ab is kb, pkb | rs and pkb+1 - rs.
Let m be the multiplicity of p in r, i.e., pm | r and pm+1 - r. The multiplicity of p in rs

is ms. Hence kb = ms. Since (b, s) = 1, s | k . h

Since (n, α) = 1, Lemma 1 (applied twice in (7)) implies

n = cα and n + α = dα

for some c, d ∈ N. Thus

α = dα − cα .

Lemma 2 For c, d, α ∈ N with d > c and α ≥ 2 we have α < dα − cα.
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Proof. By induction on α.
α = 2 :

d > c ⇒ d − c ≥ 1 and d + c ≥ 3⇒ d2 − c2 = (d − c)(d + c) ≥ 1 · 3 > 2 = α .

Induction step α −→ α+ 1:

dα+1 − cα+1 = d · dα − c · cα = dα − cα + ((d − 1)dα − (c − 1)cα)

= (dα − cα) + ((d − c) · dα) + (c − 1)(dα − cα)
(I)
>α+ 1 + 0 = α+ 1 .

(Inequality (I) follows from the induction hypothesis.) Thus dα+1 − cα+1 > α+ 1. h

It follows from Lemma 2 that the equation α = dα− cα cannot be satisfied unless α = 1
(and then d = c + 1). Hence h = n

α = n
1 = n and

x =
(

1 +
1
h

)h

=
(

1 +
1
n

)n

, y =
(

1 +
1
n

)n+1

.

This proves Theorem 1. h

Corollary 1 The point P(e, e) is the unique accumulation point of the rational points
on the graph y = ϕ(x) (= set of rational non-trivial solutions of xy = yx, x, y > 0).

4 Significance of P(e, e) for the curve defined by the equation xy = yx

From the foregoing it follows that the curve defined by xy = yx, x, y > 0, has two
branches:

(i) The line y = x , x > 0;
(ii) the curve y = ϕ(x), x > 1.

These two branches intersect at P(e, e). Hence P is a double point of this curve.
This can be checked also by the general theory of singular points. The curve described
by xy = yx, x, y > 0, is a zero level curve of F(x, y) = xy − yx, i.e., its equation is
F(x, y) = 0.
Simple calculations show that

Fx = yxy−1 − yx ln y ⇒ Fx(e, e) = 0 ,

Fy = xy ln x − xyx−1 ⇒ Fy(e, e) = 0 .

Hence P is a singular point of the curve. The nature of this singularity (isolated/cusp
point, double point, or undetermined) is determined by the sign of its discriminant 4F =
FxxFyy − F 2

xy at P (see, e.g., [3], p. 84). We have

Fxx = y(y− 1)xy−2 − yx(ln y)2 ⇒ Fxx(e, e) = e(e − 1)ee−2 − ee · 1 = −ee−1 .

Similarly

Fyy = xy(ln x)2 − x(x − 1)yx−2 ⇒ Fyy(e, e) = ee · 1− e(e − 1)ee−2 = ee−1 .

Hence Fxx(P)Fyy(P) = −(ee−1)2 < 0 and

4F (P) = −(ee−1)2 − F 2
xy(P) < 0 .

Thus P is a double point of the curve defined by xy = yx, x, y > 0. Figure 2 above
depicts this curve and its double point P(e, e).
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Note added in proof: After the acceptance of this paper, the four additional references
[5]–[8] below came to our notice (about two of them we were kindly informed by
I. Lehmann).

In [8], the solutions of (1) in algebraic numbers are characterized, and [5] contains an
approach to the characterization of rational solutions similar to ours. From the didactical
point of view, an interesting discussion of (1) is given in [7], and in [6] extensions of
(1) are investigated.
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