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Fix an integer n ≥ 2 and denote by U(Zn) the group of units of the ring Zn of residue
classes modulo n. Thus U(Zn) = { k̄ ∈ Zn | (k ,n) = 1}. U(Zn) is not closed with
respect to addition; for example, 1̄ ∈ U(Z2), but 1̄ + 1̄ = 0̄ /∈ U(Z2).

If one plays with the addition tables for U(Zn) for a short while, one observes that if n
is odd, then every element of Zn appears as a result in the table. Stated in other terms,
the equation x̄ + ȳ = k̄ seems to have solutions x̄, ȳ ∈ U(Zn) for every k̄ ∈ Zn.

If n is even, however, one quickly observes that the odd residue classes are never sums
of units in U(Zn); the reason is plain to see: n being even, the residue classes in U(Zn)
are forced to be odd so the sum of two units is never an odd residue class.

.

Es ist wohlbekannt, dass für eine Primzahl p die Kongruenz x + y ≡ 0 mod. p genau
p Lösungen hat, welche durch die Paare (0, 0), (1, p − 1), . . . , (p − 1, 1) repräsentiert
werden können. Abgesehen von der trivialen Lösung (0, 0) sind die Komponenten der
übrigen Lösungen alle von Null verschiedene Restklassen im Körper Fp mit p Ele-
menten. Dies beweist insbesondere, dass die Anzahl der Fp-rationalen Punkte des 1-
dimensionalen projektiven Raumes gleich p ist. Die analoge Fragestellung für Systeme
von Polynomen höheren Grades in mehreren Veränderlichen führt zu den Vermutun-
gen von A. Weil, welche in den siebziger Jahren durch P. Deligne gelöst wurden. Im
vorliegenden Beitrag beschäftigt sich M. Deaconescu mit folgender Variation der ein-
gangs geschilderten Problemstellung: er beantwortet die Frage nach der Anzahl der zu
n teilerfremden Lösungen x, y mod.n der Kongruenz x + y ≡ k mod.n, wobei k ,n
beliebige natürliche Zahlen sind. jk

∗) While writing this note, the author was supported by K.U.Research Grant SM177.
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These elementary remarks suggest the natural problem of finding, given some class
k̄ ∈ Zn, how many times does this class k̄ appear as a result in the addition table of
U(Zn). In different terminology: fix some integer n ≥ 2 and for every integer k with
0 ≤ k ≤ n− 1 determine the number s(k) defined as follows:

s(k) = |{(x̄, ȳ) ∈ U(Zn)×U(Zn) | x̄ + ȳ = k̄}|.

To be sure, this is not quite an obvious exercise. For if one tries constructing the addition
tables for U(Zn) for more and more complicated numbers n (using a computer helps in
performing this tedious task), the more and more elusive a working conjecture seems to
appear.

The answer to our problem turns out to depend, unexpectedly, on considerations related
to the number of fixed points of automorphisms of the additive group (Zn,+).

Theorem. Let n ≥ 2 be an integer, let 0 ≤ k ≤ n− 1 and let s(k) denote the number
of solutions (x̄, ȳ) ∈ U(Zn)×U(Zn) of the equation x̄ + ȳ = k̄ . Then

s(k) =
ϕ(n)
ϕ(n/d)

Ψ(d,n)

where d = (k ,n) and Ψ(d,n) is the number of those automorphisms of the additive
group Zn having exactly d fixed points.

In the statement of the Theorem, (k ,n) stands for the greatest common divisor of k and
n, while ϕ(n) is the value at n of Euler’s totient function.

Proof. Let α be an automorphism of the additive group Zn. Then Fix(α) = { k̄ ∈ Zn |
α( k̄) = k̄} is a subgroup of Zn and consequently, by Lagrange’s theorem, |Fix(α)| is a
divisor of n. For a divisor d of n, let Ψ(d,n) denote the number of those automorphisms
of the (additive) cyclic group Zn which have d fixed points.

Observe first that
Ψ(d,n) = |{ū ∈ U(Zn) | (u− 1,n) = d}|. (1)

In order to prove (1), notice that one can identify every automorphism α ∈ Aut(Zn,+)
with a fixed unit ū ∈ U(Zn) in such a way that α( k̄) = k̄ ū. Therefore |Fix(α)| =
|Fix(ū)| = |{ k̄ ∈ Zn | k̄ ū = k̄}| = |{ k̄ ∈ Zn | n|k(u− 1)}| = (u− 1,n). This proves
the claim.

Remember that we want to count the number s(k) of solutions in U(Zn) of the equation

x̄ + ȳ = k̄ . (∗)

Let d = (k ,n), so that k̄ = d̄t̄−1 for some fixed t̄ ∈ U(Zn). Transform now (∗) into
successive (and uglier) forms:

x̄ + ȳ = d̄t̄−1 ⇔ x̄t̄ + ȳt̄ = d̄⇔ x̄ + ȳ = d̄⇔ x̄ȳ−1 + 1 = d̄ȳ−1 ⇔ x̄ȳ + 1̄

= d̄ȳ⇔ −x̄ȳ + 1̄ = d̄ȳ.
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A word of caution is in place here: when passing from one form of the equation to
another, the equivalence sign is used to indicate that both equations have the same
number of solutions.

Turning back to the long list of equivalences: the latter equation has the same number
of solutions as (∗), but it has two advantages. Notice first that d = (dy,n) = (xy−1,n).
Next, observe that as ȳ runs over U(Zn), the expression d̄ȳ takes on exactly ϕ(n/d)
distinct values in Zn. By combining these remarks with formula (1), one sees that s(k) =
ϕ(n)
ϕ(n/d) Ψ(d,n), as asserted.

Suppose that one can find the primary decomposition of n (easy to suppose, but usually
hard to achieve in practice – a fact that should always be stressed!), i.e. n =

∏s
i=1 pαi

i

and let d =
∏s

i=1 pβi
i be a divisor of n. It was determined in [1] that

Ψ(d,n) =
∏

pi|n/d
pi|d

pαi−βi−1
i (pi − 1)

∏
pj |n/d

pj -d

pα j−1
j (pj − 2). (2)

Based on the Theorem and on formula (2), the numbers s(k) can be calculated effectively
provided that a primary decomposition of n is at hand. Formula (2) also helps deriving
a first immediate consequence of the Theorem:

Corollary 1 Let n ≥ 2 be an integer.

i) If n is odd, then every element of Zn is a sum of two units.

ii) If n is even, then k̄ ∈ Zn is a sum of two units if and only if k is even.

Proof. i) If n is odd, formula (2) indicates that Ψ(d,n) 6= 0 for all divisors d of n and
the result follows from the Theorem.

ii) By (2) and by the Theorem, s(k) 6= 0 ⇔ Ψ(d,n) 6= 0, where d = (k ,n) ⇔ d is
even⇔ k is even.

The Theorem has another, less obvious consequence in the realm of positive integers –
an inequality which “fingerprints” the primes in its extreme case.

Such inequalities are not at all uncommon. Just consider this one: if n ≥ 2 is an integer,
then ϕ(n) ≤ n− 1 and the equality occurs if and only if n is a prime. Admittedly, these
results are cute, but they have limited practical value and one wonders why to add one
more to the already existing collection. Here are some reasons: the following inequality
involves a less usual arithmetic function, namely Ψ(1,n), it suggests a natural conjecture
which I think is true, but very hard to solve and its proof uses the numbers s(k).

Corollary 2 Let n ≥ 2 be an integer and let Ψ(1,n) denote the number of the fixed-
point-free automorphisms of the additive group Zn. Then

ϕ(n)(ϕ(n)− 1) ≥ (n− 1)Ψ(1,n)

and the equality occurs if and only if n is a prime.
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Proof. As the notation Ψ(1,n) suggests, a fixed-point-free automorphism of the additive
group Zn is an automorphism which fixes only the identity class 0̄.

Take d = 1 in formula (2) to obtain

Ψ(1,n) =
s∏

i=1

pαi−1
i (pi − 2). (3)

Observe next that, by definition of s(k), one obtains:

n−1∑
k=0

s(k) = ϕ(n)2. (4)

Indeed, U(Zn) has ϕ(n) elements and its addition table has ϕ(n)2 entries.

Apply the Theorem twice to get:

s(0) = ϕ(n) (5)

and
s(k) = Ψ(1,n) whenever (k ,n) = 1. (6)

Now use (2) and (3) to obtain, after a rather long – but elementary – calculation, that

For n odd and for d a proper divisor of n, ϕ(n)Ψ(d,n) > ϕ(n/d)Ψ(1,n). (7)

After this preparation one is ready to prove Corollary 2. Let first n ≥ 4 be even, so that
by (3) Ψ(1,n) = 0. The statement is correct in this case.

Suppose next that n is odd and composite; then there exists some k , 0 < k < n − 1
with (k ,n) > 1 and one obtains:

ϕ(n)(ϕ(n)− 1) = ϕ(n)2 − ϕ(n) =
(
by (4) and (5)

)
n−1∑
k=1

s(k) =
∑

(k ,n)=1
s(k) +

∑
(k ,n)>1

s(k) =
(
by (6)

)
ϕ(n)Ψ(1,n) +

∑
(k ,n)>1

s(k) >
(
by (7) and by Theorem

)
ϕ(n)Ψ(1,n) + (n− 1− ϕ(n))Ψ(1,n) = (n− 1)Ψ(1,n).

Finally, let n be a prime. Then (3) gives that Ψ(1,n) = n− 2 and since clearly ϕ(n) =
n− 1 one verifies easily that the equality holds in this case. The proof is complete.

Remark. The inequality in Corollary 2 can be proved directly, by brute force inequalities,
but it is a bit odd to do so.
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It should be apparent by now that the numbers Ψ(1,n) bear a strong resemblance with
ϕ(n): just consider their value if n is a prime or a square-free number. A well-known
(and as far as I am aware yet unsolved) conjecture of D.H. Lehmer [3] asserts that if
n ≥ 2 and if ϕ(n) divides n− 1, then n must be a prime.

By analogy and inspired by Corollary 2, one may conjecture that the integers n ≥ 2 for
which Ψ(1,n) divides ϕ(n)−1 must be primes. I expect this conjecture to be as hard as
Lehmer’s. The reader who wishes to read more about partial results related to Lehmer’s
conjecture could consult [2] for a partial bibliography.

I want to extend here my thanks to my good friend Vali Filip. A nurse by training and
vocation, with the patience of an angel, he was able to understand most of the material,
although on occasion I had to explain to him what is a group and an automorphism of it.
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