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The subject of this note is the representation of permutations of finite sets as products
of a minimal number of simple transpositions.
Consider the following theorem:

Theorem 1
a) If a permutation ϕ which is a product of n transpositions cannot be written as a

product of fewer than n transpositions, then for any transposition occuring in this
product both elements belong to the same cycle of ϕ.

.

Einer Menge bestehend ausn Elementen ist in natu¨rlicher Weise die MengeSn der
Permutationen der Elemente dieser Menge zugeordnet. Es ist bekannt, dassSn eine
Gruppe mitn! Elementen ist. BereitsS3 liefert ein Beispiel einer nicht-kommutativen
Gruppe, und die UntergruppeAn ⊂ Sn vom Index 2, die sogenannte alternierende
Gruppe, ist fu¨r n > 4 einfach, was zur Nicht-Lo¨sbarkeit algebraischer Gleichungen
vom Grad gro¨sser als vier durch Radikale fu¨hrt. Andererseits ist es einfach zu bewei-
sen, dass jede Permutationπ ∈ Sn als Produkt von Zykeln darstellbar ist. Spezielle
Zykeln sind die Transpositionen, d.h. die Vertauschungen zweier Elemente; es zeigt
sich, dassπ insbesondere als Produkt von Transpositionen darstellbar ist. Im vorlie-
genden Beitrag wird nun auf elementare Weise gezeigt, welches die minimale Anzahl
von Transpositionen ist, die man zur Darstellung einer Permutation beno¨tigt, und auf
wieviele Arten eine solche Darstellung erfolgen kann.jk
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b) A permutation ϕ which is a cycle of length n + 1 cannot be written as a product
of fewer than n transpositions.

Part b) of Theorem 1 is well-known, see e.g. Schwenk (1984), Lossers (1986), and
the literature cited there. We show how assertions a) and b) can be proved together by
induction onn ∈ N0. We will use the word "cycle" in the sense that a cycle can also be
one-elemented. However, transpositions will always be genuine, i.e. two-elemented.

Proof of Theorem 1. For a cycleϕ, denote by|ϕ| its length. Forn = 0, a) and b) are
trivial. Assume them to be true for all 0≤ k ≤ n and considerϕ = ϕ′(a, b), whereϕ′ is
a product ofn transpositions andn + 1 is the minimum number of transpositions which
is necessary to representϕ. Let ci (1 ≤ i ≤ m) denote the disjoint cycles ofϕ′. If both
a, b belonged to the sameci0, then the permutationci0(a, b) as a product of not fewer
than |ci0| transpositions (induction hypothesis b)) would consist of two disjoint cycles
of |ci0| elements together and could therefore be represented by|ci0| − 2 transpositions,
which is a contradiction. Soa, b belong to two differentci ’s, thus any of the cycles
(a, b), ci (1 ≤ i ≤ m) is part of one of the disjoint cyclesdi of ϕ, and therefore for any
transposition ofϕ in a decomposition ofϕ into a minimal number of transpositions both
interchanged elements belong to the samedi, which proves a). Now assume in addition
that ϕ is a cycle itself, i.e. w.l.o.g.ϕ = (1,2, . . . ,L), a, b ∈ N, a < b. We show that
L = n + 2. We haveϕ′ = ϕ′′ϕ′′′, where

ϕ′′ = (1,2, . . . , a, ϕ(b), ϕ2(b), . . . ,L)
and

ϕ′′′ = (ϕ(a), ϕ2(a), . . . , ϕ−1(b), b).

We have|ϕ′′| = L − (b − a) and |ϕ′′′| = b − a, hence (by counting transpositions in a
minimal transposition decomposition and using induction hypotheses a) and b))

n + 1 = |ϕ′′| + |ϕ′′′| − 1 = L − (b − a) + b − a − 1,

henceL = n + 2. �

In this context, a natural question is also in how many ways a cycle of lengthn can be
represented as a product ofn − 1 transpositions. LetNn be this number.

Theorem 2 Nn = nn−2 (n ∈ N).

This property has been proved by Lossers (1986), using the formula for the number of
point-labeled trees ofn points. See also the literature cited in Lossers (1986) for other
references to this theorem. Here, let us present a self-contained proof based on Theorem
1a) and Abel’s identity:

m∑
k=0

(
m
k

)
(x + k)k−1(y + m − k)m−k = x−1(x + y + m)m. (1)
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Proof of Theorem 2. Forn = 1 the assertion is trivial. We assume it to be true fork ≤ n
and prove it forn + 1. The cycle

ψ = (1,2, . . . ,n + 1) = (a1, b1)(a2, b2) · · · (an, bn)

(ak < bk (1 ≤ k ≤ n)) can be represented as follows:

ψ = ψ′(an, bn)

with
ψ′ = ψ′′ψ′′,

ψ′′ = (1,2, . . . , an, ψ(bn), ψ2(bn), . . . ,n + 1),

ψ′′′ = (ψ(an), ψ2(an), . . . , ψ−1(bn), bn).

Writing k := bn − an, the triple (ψ′′, ψ′′′, (an, bn)) is uniquely determined by the pair
(k , an). For a givenk , there existn+1− k possibilities to choosean. As (in consideration
of Theorem 1a)) for all(ak , bk ) (1 ≤ k ≤ n−1), the elementsak , bk belong to the same
cycle ofψ′, there are (for fixedk , an)

(n−1
k−1

)
Nk Nn+1−k possibilities forψ′, thus by the

induction hypothesis and (1) (withx := y := 1,m := n − 1) we calculate

Nn+1 =
n∑

k=1

(n + 1− k)
(

n − 1
k − 1

)
Nk Nn+1−k

=
n∑

k=1

(n + 1− k)
(

n − 1
k − 1

)
k k−2(n + 1− k)n+1−k−2

=
n−1∑
k=0

(
n − 1

k

)
(k + 1)k−1(n − k)n−1−k

= (n + 1)n−1. �
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