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1 Introduction
A recent article [1] presents an analysis of a one-person game which consists of a square
board divided into 25 smaller squares, each containing a light bulb attached to a button,
and each button reversing the state of the corresponding bulb and of the neighbouring
ones on the same row or column (thus each button-pushing affects from 3 to 5 bulbs).
Given an initial position with some of the bulbs turned on, the object is to reach the
position where all the bulbs are turned out (henceforth called thezero position). A
complete description of thesolvable positions (i.e., positions from which it is possible
to reach the zero position), together with some generalizations for higher-order boards,
is given in [1].

.

Im vorliegenden Beitrag von P.V. Arau´jo kann auf wenigen Seiten verfolgt werden,
wie mit geschickt eingesetzten, elementaren Methoden der linearen Algebra u¨ber dem
Körper mit zwei Elementen – wie man sie auch erfolgreich in der Kodierungstheorie
anwendet – der Ausgang eines gewissen Spiels vorhergesagt werden kann. Fu¨r die
vom Spielfieber erfassten Leserinnen und Leser lohnt es sich vielleicht, ein kleines
Programm zum vorgetragenen Spiel zu schreiben, denn der Spielerfolg ha¨ngt von der
Grösse und dem Anfangszustand des Spielfeldes ab. Am Ende des Beitrags wird vom
Autor eine Spielstrategie vorgeschlagen. Jeder ist gefragt, ob es vielleicht noch eine
bessere Strategie gibt.jk
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Here we consider a variation of that game. Theswitchboard of order n (abbreviated
�n) is ann × n square of light bulbs and attached buttons where we assume that each
button reverses the state of every bulb on the same row or on the same column (this
adds up to 2n − 1 bulbs); the object is again to turn all the lights out. We prove that
the parity ofn makes a great difference to our game: whereas for evenn every position
is solvable [Theorem 1], for oddn only a fraction of 1/22n−2 of all possible positions
are solvable [Theorem 3]. In the latter case, we give a simple characterization of the
solvable positions [Theorem 5], and describe in our final section a strategy for reaching
the zero position from any such position.

2 Even versus odd
We say that a sequence of button-pushings (ormoves) is elementary if its net result is
that of reversing the state of just one bulb, leaving all the others unchanged. It is clear,
by symmetry, that if an elementary sequence exists for�n, then we can specify one such
sequence for reversing any given bulb, and therefore, by turning out each lighted bulb
in turn, we see that every position of�n is solvable. It is easy to exhibit elementary
sequences whenn is even: given any bulb, simply push once each button on the same
row and each button on the same column. The given bulb changes state exactly 2n − 1
times; since this number is odd, the final state is the reverse of the original one; all
other bulbs suffer either 2 orn reversals, and therefore their final state is identical to the
original one. Thus:

Theorem 1 If n is even, then every position of �n is solvable.

The above figure, where each dot corresponds to a lighted bulb, and each empty square to
an unlighted bulb, gives an example of an unsolvable position for�3. Indeed, consider
the set� of four squares belonging to either the first column or the first rowbut not to
both. Every single move reverses the state of an even number of bulbs on�. Hence,
starting with three lighted bulbs on� and applying an arbitrary sequence of moves,�
will always end up with either one or three lighted bulbs, and therefore we never reach
the zero position.

This example can be generalized to arbitrary oddn. But first a bit of terminology. By
the T-set of type (i, j) in �n, denoted by�i j , we mean the set of squares belonging
to either rowi or column j but not to both. Now let n be odd and consider anyT-set
�i j : the crucial observation is that, ifn is odd, then every move affects an even number
(equal to 2,n− 1 or 2n− 2) of bulbs on �i j ; hence, if we have an initial position with
an odd number of lighted bulbs on�i j , then we can never reach the zero position. We
can summarize this as follows:

Proposition 2 If n is odd, then a necessary condition for a given position of �n to be
solvable is that every T-set contains an even number of lighted bulbs.
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Our main result, to be proved in the next section, is that the above condition is also
sufficient. Thus, for oddn, we have a practical method for checking whether a given
configuration is solvable; this involvesn2 checks, as many as the distinctT-sets. We
will show, however, that theseT-sets are not all independent and that, as a result, we
only need to check 2n−2 suitably chosenT-sets (e.g., all theT-sets that include a given
square – see Theorem 5).

3 mod 2 linear algebra

Following [1], we now introduce a method for coding all possible positions of�n. Let
K = Z/2Z be the field with the two elements 0 and 1, and letV = K

n2
; it is also useful

to think of V as (Kn)n. Each(v1, . . . , vn) in V represents a position of�n as follows:
row i is coded byvi = (vi1, . . . , vin), so thatvi j = 1 if and only if the bulb on rowi and
column j is lighted. Reversing the state of a bulb means interchanging 0 and 1, which
is equivalent inK to addition by 1. For instance, the effect on position(v1, . . . , vn) of
pushing the top-left button is that of adding(1,1, . . . ,1; 1,0, . . . ,0; . . . . . . ; 1,0, . . . ,0)
to it. More generally, pushing the button on rowi and columnj is equivalent to adding
the vector

Xi j = (e j , . . . , e j ,X, e j , . . . , e j),

whereX = (1,1, . . . ,1) ∈ K
n appears in theith position, ande j is the j th vector of the

canonical basis ofKn.

A given positionv is solvable if and only if there is a sequence of moves that transforms
it into the zero position; but if we start from the zero position and perform the same
moves in reverse order, we again obtainv. Thus we see that a positionv is solvable if
and only if it can be reached from zero; and this means thatv can be written as a sum
of vectorsXi j . Thus the solvable positions constitute a subspace U of V, more precisely
the subspace spanned by the vectors Xi j .

We can reformulate Proposition 2 by using the ordinary inner productv · w of two
vectorsv,w ∈ V. Let eachT-set�i j be identified with the element inV whose entries
corresponding to squares in�i j are 1, and all others are 0. Then the following conditions
are easily seen to be equivalent:

(i) Positionv is such that the number of lighted bulbs on�i j is even;

(ii) v · �i j = 0.

Let W be the subspace generated by all�i j . Then we see that Proposition 2 asserts

that, if n is odd, then U ⊆ W⊥. (Incidentally, we also haveW ∩ W⊥ = {→0 }, so that
by Theorem 3 belowU andW are complementary subspaces.) We now state our main
result:

Theorem 3 Let n ≥ 3 be odd. Then the set U of all solvable positions is the orthogonal
space to the subspace W generated by the T-sets. Furthermore, we have dim U =
n2 − 2n + 2 and dim W = 2n − 2.
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In our proof we use the fact that, for any subspaceE of V, we have

dimE + dimE⊥ = dimV = n2, (1)

and therefore also(E⊥)⊥ = E. [For a proof of (1), pick up anyn2 × n2 matrix A over
K whose column vectors generateE, and let f : V → V be given byf(v) = v A; then
(1) is equivalent to the well-known relation dimf(V) + dim Ker f = dimV.] Since we
have already shown thatU ⊆ W⊥, it is sufficient, to establish the theorem, to prove that

dimU ≥ n2 − 2n + 2 (2)

and
dimW ≥ 2n − 2. (3)

Proof of (2). Let B ∈ �n×n(K) be the matrix all of whose entries are equal to 1, and let
I ∈ �n×n(K) be the identity matrix. It is easy to check that the columns of the following
n2 × n2 matrix

M =




B I · · · I I
I B · · · I I

· · · · · · · · ·
I I · · · B I
I I · · · I B




are precisely the vectorsXi j defined above; hence the dimension ofU equals the rank
of M. The following lemma deals with general matrices of this type:

Lemma 4 Let Y , Z be p×p matrices. Denote by Mm(Y,Z) the p m×p m matrix whose
diagonal blocks are equal to Y , and whose other blocks are equal to Z. Then we have

detMm(Y,Z) = (det[Y − Z])m−1 · det[Y + (m − 1)Z]. (4)

Proof. For apm× pm matrix, we divide its rows intom disjoint sets, each consisting of
p consecutive rows; we call each such set afat row, and we definefat columns similarly.
We perform elementary fat row and fat column operations onMm(Y,Z). First we replace,
for each j, fat column j by the sum of the fat columns 1, 2,. . ., j of Mm(Y,Z); in the
resulting matrix we subtract successively, fori = 1, 2, . . ., m−1, fat row i + 1 from fat
row i (thus we replace fat row 1 by the difference of fat rows 1 and 2, and so on). In
the end we obtain




Y − Z
Y − Z

.. .
Y − Z

Z 2Z . . . (m − 1)Z Y + (m − 1)Z


 , (5)

where all non-zero blocks belong either to the main diagonal or to the last fat row. Now
(4) follows readily from (5). �
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In the notation of the lemma, we haveM = Mn(B, I), and therefore

detM = (det[B − I])n−1 · det[(n − 1)I + B] = 0,

sincen − 1 ≡ 0 (mod 2), and so the second factor reduces to detB, which is 0. Hence
the rank ofM is less thann2. SinceB − I = Mn(0,1), we have by (4)

det[B − I] = (−1)n−1 · (n − 1) ≡ 0 (mod 2), (6)

and, denoting byB∗ and I∗ the (n − 1) × (n − 1) matrices analogous toB and I, also

det[B∗ − I∗] = (−1)n−2 · (n − 2) ≡ 1 (mod 2). (7)

Let P be the lower triangular matrix of type (5) obtained fromM as in Lemma 4: thus
rank M =rank P, andP has, on the main diagonal,n − 1 blocksB − I and one block
B. Let P∗ be the sub-matrix ofP obtained by removing rows and columnskn, for
k = 1, . . ., n − 1, and also removing the lastn − 1 rows and columns. ThenP∗ is a
(n2 − 2n + 2) × (n2 − 2n + 2) triangular matrix where, on the main diagonal, we have
n − 1 consecutive blocksB∗ − I∗ and one final entry equal to 1. Using (7), we have

detP∗ = (det[B∗ − I∗])n−1 ≡ 1 (mod 2),

and it follows that rankM ≥rank P∗ = n2 − 2n + 2, which concludes the proof of (2).
�

Proof of (3). The subspaceW is spanned by theT-sets

�i j = (e j , . . . , e j ,X − e j , e j , . . . , e j) = Xi j − (0, . . . ,0, e j ,0, . . . ,0),

and so it is sufficient to exhibit a set of 2n − 2 linearly independent�i j . We prove that
�12, �13, . . ., �1n, �21, �31, . . ., �n1 form just such a set. Indeed, letQ be the matrix
whose columns are the given vectors in the same order, and letQ∗ the(2n−2)×(2n−2)
sub-matrix ofQ made up of rows 2, 3,. . ., n andn + 1, 2n + 1, . . ., (n−1)n + 1. Then
we have

Q∗ =
[

B∗ − I∗ 0
0 B∗ − I∗

]
,

and thereforeQ∗ is non-singular by (7), and so rankQ = 2n − 2. This completes the
proof of (3) and also that of Theorem 3. �

This proof gives an explicit basis forU; and, in view of Theorem 3, to check whether a
given positionv ∈ V is solvable, we only have to compute the inner product ofv with
each of the 2n − 2 vectors of any basis ofU. The following theorem sums up these
observations for basis of the type given in the proof of (3):

Theorem 5 Let n ≥ 3 be odd, and fix k , l ∈ {1, . . . ,n}. The following conditions on a
position v ∈ V are equivalent:

(i) v is solvable;

(ii) v ·�k j = 0 for all j ∈ {1, . . . ,n}\{l}, and v ·�il = 0 for all i ∈ {1, . . . ,n}\{k}.
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4 Back to the switchboard
Throughout this section,n ≥ 3 is a fixed odd number. In Section 3 we gave a method
for checking whether a given positionv of �n is solvable (Theorem 5); in this section,
starting with a solvable positionv, we describe explicitly a sequence of moves that will
lead fromv to the zero position.

Our strategy is to identify a number ofbasic configurations which every non-zero position
must contain. The basic configurations are of three types (see the figure below):

diagonal corner cross

a) Diagonal: we say that v contains a diagonal if there exists a permutation σ of
{1, . . . ,n} such that viσ(i) = 1 for all i.

b) Corner: we say that v contains a corner if there exist k , l, m, p ∈ {1, . . . ,n} such
that k = l, m = p and vmk = vpk = vp l = 1.

c) Cross: v contains a cross if there exist l1, l2, l3, all distinct, and m1, m2, m3, also
all distinct, such that vl1m1 = vl2m1 = vl3m2 = vl3m3 = 1.

We prove below (Proposition 6) that, if v is solvable and non-zero, then v contains one of
these configurations. We now describe how, in each of the above cases, we can decrease
the size of v (i.e., its total number of 1’s) by an appropriate sequence of moves. By the
results of the previous section the new position thus obtained is solvable; if non-zero,
we can again decrease its size, and continue in this way until only 0’s are left.

a) For each i = 1, . . ., n, push once the button on (i, σ(i)). This reverses all the bulbs
on these squares, leaving the others unchanged. The size of v is thus decreased by
n.

b) Push once every button on columns k and l, except those on rows m and p. Exactly
four bulbs are reversed: those on (m, k), (p, k), (p, l) or (m, l). The size of v is
decreased by either 2 or 4, depending on whether we had vml = 0 or vml = 1.

c) If vl2m2 = 1 or vl2m3 = 1 then v contains a corner, and we proceed as in b).
Otherwise, we push every button on columns m2 and m3, except those on rows l2

and l3. The size of v is unchanged, but we now have two additional 1’s on row l2.
The new position contains a corner on (l1,m1), (l2,m1) and (l2,m2); and now we
may proceed as in b).

Proposition 6 If v is a solvable non-zero position, then v contains at least one basic
configuration.
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Proof. Assume first that no row or column of v contains two or more 1’s. Pick up (k , l)
such that vkl = 1. By Theorem 5, we have v · �il = 0 for each i = k . Since vkl is the
only non-zero entry on column l, this implies that Σ{ j: j �= l}vi j is odd, and therefore row
i contains at least one (and therefore exactly one) 1. Similarly, each column contains
exactly one 1, and we conclude that v is a diagonal configuration.

Now assume that some row or column contains at least two 1’s. For definiteness, assume
that row k contains two or more 1’s. If, for some j such that vk j = 1, there exists some
other 1 on column j, then we have succeeded in finding a corner configuration in v.
Otherwise, we have the situation where each 1 on row k is the only non-zero entry
on the respective column. We claim that then there is a column containing at least two
1’s; and it follows from this claim that v contains a cross configuration. Fix l such that
vkl = 1, and let i = k . Using the fact that v · �il = 0, we conclude as above that
there exists σ(i) such that viσ(i) = 1. But, since we must have vkσ(i) = 0, the function
σ : {1, . . . ,n} \ {k} → {1, . . . ,n} excludes at least two values and so is not injective;
and this proves our claim. �

References
[1] Anderson, M. and Fell, T.: Turning lights out with linear algebra. Math. Magazine 71 (1998), 300–303.

Paulo Ventura Araújo
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