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1 Introduction
For a givenn-sided plane polygonP0, one may construct a sequence of polygons via
an iterative procedure. A simple example of this sort of construction is the so-called
Kasner polygons [20] – construct a second polygonP1 whose vertices are the midpoints
of the sides ofP0; construct a third polygonP2 whose vertices are the midpoints of the
sides ofP1; continuing this process one obtains a sequence ofn-gons. An interesting
question is: what can we say about the limit of this sequence? It is obvious that the
size of the polygons will get smaller rapidly, but what about the limiting behavior of
their shapes? For instance, if we consider a triangle, joining the mid-points on each side

.

Verbindet man die Seitenmittelpunkte eines vorgelegten Dreiecks, so erha¨lt man ein
zum Ausgangsdreieck a¨hnliches Dreieck. Fa¨hrt man in dieser Weise fort, so erha¨lt man
eine Folge immer kleiner werdender a¨hnlicher Dreiecke, welche zum Schwerpunkt des
Ausgangsdreiecks konvergiert. In der vorliegenden Arbeit untersuchen L.R. Hitt und
X.-M. Zhang analog konstruierte Folgen von beliebigenn-Ecken in der Ebene. Im
Gegensatz zum Falln = 3 ist aber die Beschreibung des Grenzwerts der entsprechen-
den Folge von Polygonen fu¨r n > 3 im allgemeinen nicht einfach. Auch wenn sich
die Autoren deshalb auf das Studium von Polygonen, welche einen Umkreis besitzen,
beschra¨nken müssen, finden sie eine Fu¨lle interessanter Ergebnisse und stellen da-
bei mannigfache und unvorhergesehene Zusammenha¨nge zu anderen mathematischen
Gebieten her.jk
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yields a similar triangle. Consequently all triangles in the resulting sequence are similar
triangles. If we consider a quadrilateral, joining the midpoints on each of the four sides
produces a parallelogram. All subsequent quadrilaterals are parallelograms. However,
when we consider an arbitrary pentagon and produce the sequence of pentagons by this
midpoint-construction, the limiting situation can be very complicated.

These kinds of questions have been investigated by many mathematicians including P.J.
Davis, G.R. Maclane, A.M. Gleason, G.C. Shephard, J. Douglas, and I.J. Schoenberg
[3, 4, 5, 7, 9, 20]. Besides the Kasner polygons, constructing sequences of triangles and
studying the geometry of their limits has repeatedly appeared in undergraduate math
journals and books as well as in proposed problems in American Mathematical Monthly
[1, 6, 10, 12, 21].

When one tries to generalize the problem for triangles ton-sided polygons, there is a
great deal of difficulty. Part of the reason might be the fact that every triangle is uniquely
associated with two circles – an inscribed circle and a circumscribed circle – whereas a
generaln-sided polygon (n ≥ 4) does not always have this property.

In this paper, we will be concerned with the construction of sequences of polygons that
are inscribed in a circle (they are called “cyclic” in this case.) We find this kind of
construction and the underlying analysis and algebra to be interesting. It is known that
the class of cyclic polygons plays an important role in isoperimetric problems for plane
polygons. We hope that they can bridge the gap of difficulty between the constructions
of sequences of triangles and sequences of general polygons.

2 Nesting Triangles

We will begin with some well-known simple examples.

Example 2.1 Take any scalene triangleT0 and construct the inscribed circle. The
points of tangency form a second triangle; denote it byT1. Then construct the inscribed
circle for T1. The points of tangency on the three sides ofT1 form a third triangleT2.
Continuing this process one gets a sequence of triangles{Tn}∞n=0. What does the shape
of Tn look like asn gets bigger and bigger? The answer is thatTn will be closer to an
equilateral triangle! (Of course, ifT0 is equilateral, then every subsequentTn, n ≥ 1,
will be equilateral.) To confirm the answer, observe from Figure 1 that
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Similarly, we have limn→∞ Bn = limn→∞ Cn = π/3.

This problem has been discussed in [1, 12] using slightly different arguments.
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Example 2.2 A variation of the first example is the following. Let T0 = �A0B0C0

be any scalene triangle circumscribing a circle Γ0 with center O. The line segments
A0O, B0O, and C0O (the angle bisectors of T0) intersect Γ0 at points A1, B1, and C1,
respectively, and form a second triangle T1 = �A1B1C1 that circumscribes a circle Γ1

with center O1. Construct a third triangle from T1 in the same manner, and so on. We
have a new sequence of triangles that are nested in a coherent manner. The triangle Tn in
this sequence is also approaching the equilateral one as n increases. To see this, notice
that from Figure 2

An =
n∑

k=1

π

4k +
A0

4n , n ≥ 1,

and the rest of the argument is the same as Example 2.1. This problem was posed in
[10].

0

C0

0
A B

A1

B1

C1

O

Fig. 2



24 Elem. Math. 56 (2001)

Remark 2.3

(i) There are certainly other ways to construct nesting triangles whose members become
closer and closer to equilateral. For instance, let T0 again be a scalene triangle with
vertices A, B, and C, and let T1 be the triangle formed by the intersection points of
the angle bisectors of T0 on its three sides. Construct T2, T3, . . . in the same way.
Then it can be proved that the shape of Tn will be closer and closer to equilateral
as n gets bigger and bigger. Trimble gave a proof for the special case when T0 is
an isosceles triangle in [21]. He claimed that the proof for the general case was
rather messy, and hoped for an elegant simple proof.

(ii) Since the limiting triangles in the examples above are actually points, it might be
improper to talk about the shapes of the limits of these sequences. However, we
may rescale the triangles after they have been constructed. To be more specific,
notice that in Example 2.1, the initial triangle T0 is always inscribed in a circle
Γ with radius r. After the construction of the second triangle T1 in terms of the
“ incircle” Γ0 of T0, we may rescale the circle Γ0 to the same size as Γ. Consequently,
the triangle T1 will be rescaled too by a similarity transformation S. That is, we
change the size of T1 and preserve its shape! Continue this rescaling every time
for the subsequent triangles. It is clear that we are actually dealing with a sequence
of triangles that are all inscribed in the same circle (if we identify all congruent
circles). See Figure 3.
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(iii) From the point of view of dynamic systems, if we denote by � the set of all
triangles that are inscribed in the circle Γ, and let F be a map from � to itself
defined by the construction and rescaling of triangles mentioned above, then the
sequence of triangles can be viewed as the orbit of T0 under the iteration of F .
We are interested in the limiting behavior of the orbit of a given triangle. How
complicated F can be depends on the construction. In the next section, we will be
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concerned with constructions and rescaling of various polygons and will present
the map F analytically and algebraically.

3 Sequences of Polygons
We now turn to the general n-sided polygons. Let P be a convex n-sided plane polygon
and let TP be the polygon whose vertices are the midpoints of the sides of P. We are
interested in the sequence of polygons {P,TP,T2P, . . .}, and especially in the change of
the shapes of these polygons. From elementary geometry, it is well-known that if P is a
triangle, then TP is similar to P. Therefore, all TmP’s, m = 1, 2, . . ., are similar despite
their sizes. If P is a quadrilateral, then TP is a parallelogram, and TmP is similar to
TP if m is odd, to T2P if m is even. However, when P is a convex k -sided polygon
with k ≥ 5, the problem is far from simple. There have been a number of articles
that discussed the possible change of the shape of TmP with different emphases [3, 4,
5, 7, 20]. Since a sequence of polygons obtained by the midpoint-construction always
converges to a point (the centroid of the initial polygon [7]) it might be awkward to talk
about the “ limiting figure” which is degenerate. Inspired by Remark 2.3(ii) in Section 2,
we will make a slight change to the midpoint-construction. We will be concerned with
only the sequences of cyclic polygons and will study the limits of these sequences.

Let P be an n-sided polygon with vertices z1, z2, . . . , zn, inscribed in a unit circle Γ
centered at O. Assume that O is in the interior of P. Join O to each midpoint on the
sides of P and extend these line segments to meet the circle Γ at points v1, v2, . . . , vn,
respectively. These new points form a second n-sided polygon that is inscribed in the
same circle as P. Denote the second polygon by TP where T represents a transformation
on the set of all n-sided polygons inscribed in Γ. We are interested in the sequence of
polygons {P,TP,T2P, . . .} and the limit of TmP as m → ∞. Since we have stretched
every midpoint on the sides of P to the circumference of Γ, the resulting polygons are
no longer nested like those discussed in [4, 7]. We will call the sequence of polygons
{TmP}∞m=0 the midpoint-stretching polygons generated by P.
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Theorem A Every sequence of midpoint-stretching polygons converges to the regular
polygon.

Proof. Let ai = zizi+1 be the ith side of P, i = 1, 2, . . . ,n (where zn+1 = z1) and let θi

denote the central angle of Γ subtended by ai where 1 ≤ i ≤ n and
∑n

i=1 θi = 2π. Since
we are concerned only with cyclic polygons inscribed in the same circle and interested
only in their shapes, we may characterize the polygon P by an n-tuple of real numbers
Θ = [θ1, θ2, . . . , θn] and denote by P(Θ) the corresponding congruence class of cyclic
polygons. From the construction of TP whose vertices are v1, v2, . . . , vn, we see that the
central angles subtended by the sides of TP are (θ1+θ2)/2, (θ2+θ3)/2, . . . , (θn−1+θn)/2.
Setting

T =
1
2




1 1 0 · · · 0
0 1 1 · · · 0
...

...
...

. . .
1 0 0 · · · 1


 ,

we may represent TP by P(TΘ), and inductively, TmP by P(TmΘ). Because the matrix
T is a doubly stochastic matrix and

∑n
i=1 θi = 2π, it can be proved (see Section 5) that

lim
m→∞

[TmΘ] = [2π/n, 2π/n, . . . , 2π/n]. (1)

Therefore, the sequence of midpoint-stretching polygons converges to the regular poly-
gon. �

Figure 5 shows the deformation of a cyclic 5-gon P(Θ) under the iteration of the
midpoint-stretching, where Θ = (0.1π, 0.3π, 0.7π, 0.55π, 0.35π)

Remark 3.1

(i) Intuitively, T averages every two consecutive central angles of the polygon even-
tually “evening up” all of them.

(ii) Doubly stochastic matrices are a very important class of matrices. We will briefly
review some of their properties that are relevant to our problems in the next section.

(iii) Cyclic polygons play important roles in isoperimetric inequalities. It is well-known
that among all n-sided plane polygons with the given set of n-sides, the cyclic
one encloses the largest area [13, 16, 23]. Thereafter the study of the isoperimet-
ric inequalities for plane polygons can be reduced to the study of isoperimetric
inequalities for cyclic polygons. We have discussed this problem in articles [23,
24] and have introduced the “degree of irregularity” for cyclic polygons which has
some probabilistic interpretations. We find the same idea can also be used in the
discussion of midpoint-stretching polygons. In particular, we will prove the above
limit (1) in Section 5.
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Fig. 5

In general, we choose an arbitrary point on the ith side of P and stretch the line segment
joining the center of Γ with this point to meet the circumference of Γ at a point vi ,
i = 1, 2, . . . ,n. Denote the polygon with vertices v1, v2, . . . , vn by TP, then we may
characterize this polygon by the n-tuple of its central angles Φ = [φ1, φ2, . . . , φn], where

φ1 = (1 − λ1)θ1 + λ2θ2, φ2 = (1 − λ2)θ2 + λ3θ3, . . . , φn = (1 − λn)θn + λ1θ1,

and each λi (i = 1, 2, . . . ,n) is a real number between 0 and 1. We may rewrite TP as
P(Φ) = P(TΘ) where the transformation T can be expressed as the following matrix:

T =




1 − λ1 λ2 0 · · · 0
0 1 − λ2 λ3 · · · 0
...

...
...

. . .
λ1 0 0 · · · 1 − λn


 .

It is clear that T is a doubly stochastic matrix if and only if λ1 = λ2 = · · · = λn. Let us
set Λ = (λ1, λ2, . . . , λn), and call the sequence of polygons constructed by the iteration
of T, {TmP}∞m=0, the Λ-stretching polygons generated by P under T.

Theorem B The Λ-stretching polygons converge to the regular polygon if λ1 = λ2 =
· · · = λn = t where 0 < t < 1.
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Proof. See Section 5. �

Note 3.2 Theorem A is simply a special case of Theorem B when t = 1/2. Figure 7
shows the convergence of a sequence of 6-gons P(TmΘ) with

Θ = (0.25π, 0.1π, 0.35π, 0.75π, 0.45π, 0.1π)

under the iteration of the Λ-stretching where Λ = (0.27, 0.27, . . . , 0.27).

4 Doubly Stochastic Matrices and Schur-Convex Functions
In what follows, we will briefly review some basic concepts about doubly stochastic
matrices and Schur-convex functions. A more detailed study of these topics and their
fruitful applications can be found in [17, 19].

Definition 4.1 An n × n matrix S = [si j ] is called doubly stochastic if si j ≥ 0 for
1 ≤ i, j ≤ n, and

n∑
j=1

si j = 1, i = 1, 2, . . . ,n;
n∑

i=1

si j = 1, j = 1, 2, . . . ,n.

Example 4.2
(i) A permutation matrix is a doubly stochastic matrix. (A permutation matrix is a

matrix obtained by permuting the rows of the identity matrix.)

(ii) S = [si j ] with si j = 1
n , 1 ≤ i, j ≤ n is a doubly stochastic matrix.
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Fig. 7

Let In = I × I × · · · × I (n copies), where I is an interval on the real number line R.
We are interested in the following special multivariable functions.

Definition 4.3 A function f : In −→ R (n > 1) is called Schur-convex if for every
doubly stochastic matrix S,

f(Sx) ≤ f(x) (2)

for all x ∈ In. It is called strictly Schur-convex if the inequality is strict and Schur-
concave (respectively, strictly Schur-concave) if the inequality (2) is reversed.

Definition 4.4 A function f : In −→ R (n > 1) is called symmetric if for every
permutation matrix P,

f(Px) = f(x)

for all x ∈ In.

Every Schur-convex function is a symmetric function. Because if P is a permutation
matrix, so is its inverse P−1. Hence if f is Schur-convex, then

f(x) = f(P−1(Px)) ≤ f(P(x)) ≤ f(x).

This shows that f(Px) = f(x) for every permutation matrix P, so f is symmetric. On
the other hand, it is not hard to see that not every symmetric function is a Schur-convex
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function (cf. [19, p. 258]). Similarly, every Schur-concave function is symmetric, but not
conversely. However, we have the following so-called Schur’s condition.

Lemma 4.5 ([19, p. 259]) Let f(x) = f(x1, x2, . . . , xn) be symmetric and have con-
tinuous partial derivatives on In where I is an open interval. Then f : In −→ R is
Schur-convex if and only if

(xi − xj)
(

∂ f
∂xi

− ∂ f
∂xj

)
≥ 0 (3)

on In. It is strictly Schur-convex if (3) is a strict inequality for xi 
= xj , 1 ≤ i, j ≤ n.

Since f(x) is symmetric, Schur’s condition can be reduced to ([17, p. 57])

(x1 − x2)
(

∂ f
∂x1

− ∂ f
∂x2

)
≥ 0, (4)

and f is strictly Schur-convex if (4) is a strict inequality for x1 
= x2. The Schur’s
condition that guarantees a symmetric function being Schur-concave is the same as (3)
or (4) except for the direction of the inequality.

Example 4.6 Let Θ = (θ1, θ2, . . . , θn), where 0 < θi < π, i = 1, 2, . . . ,n and
∑n

i=1 θi =
π. Define

F(Θ) = n sin
π

n
−

n∑
i=1

sin θi,

then it is easy to verify by (4) that F is a strictly Schur-convex function because

(θ1 − θ2)
(
∂F
∂θ1

− ∂F
∂θ2

)
= (θ1 − θ2)2sin θ∗ > 0 for θ1 
= θ2,

where θ∗ is between θ1 and θ2. Moreover,

F(Θ) ≥ 0, with equality holding if and only if θ1 = θ2 = · · · = θn = π/n. (5)

5 Degree of Irregularity and Isoperimetric Inequalities
Let us recall the classical isoperimetric inequality for an n-sided plane polygon Pn:

L2
n − 4dnAn ≥ 0, (6)

where Ln is the perimeter of Pn, An is the area of the domain enclosed by Pn, and
dn = n tan π

n . Equality holds if and only if Pn is regular ([13, 16, 18, 23]).

In geometry, we call L2
n −4dnAn the isoperimetric deficit of the polygon Pn. It measures

the deviation of Pn from the “ regularity” . Among all n-sided plane polygons with given
n sides, the cyclic polygon encloses the largest area ([13, 16, 23]). So to investigate
the isoperimetric inequalities for plane polygons, we need to pay attention to cyclic
polygons only. Now, for a cyclic polygon Pn with lengths of sides a1, a2, . . . , an, if
θ1, θ2, . . . , θn are the central angles subtended by the n sides respectively, and 0 < θi < π
for i = 1, 2, . . . ,n, we denote Pn by Pn(Θ) where Θ = (θ1, θ2, . . . , θn),

∑n
i=1 θi = 2π,

and introduce the degree of irregularity for Pn(Θ).
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Definition 5.1 Let Pn(Θ) be an n-sided cyclic polygon. The degree of irregularity of
Pn(Θ) is defined as

Deg[Pn(Θ)] = n sin
π

n
−

n∑
i=1

sin(θi/2). (7)

It is clear that Deg[Pn(Θ)] ≥ 0 for all Pn(Θ), and Deg[Pn(Θ)] = 0 only when Pn(Θ)
is regular. If Pn(Θ) is inscribed in a circle of radius r, then Deg[Pn(Θ)] times 2r is
simply the difference between the perimeters of Pn(Θ) and the regular n-sided polygon
inscribed in the same circle. We have noticed that the equality in (6) distinguishes only
the regular polygon among all isoperimetric polygons with the same number of sides.
The following theorem allows us to compare any two n-sided cyclic polygons in terms
of their degrees of irregularity.

Theorem 5.2 Let Pn(Θ) and Qn(Θ̄) be two n-sided cyclic polygons. If there is a doubly
stochastic matrix S such that Θ̄ = SΘ, then

Deg[Qn(Θ̄)] ≤ Deg[Pn(Θ)].

Equality holds if and only if Θ and Θ̄ differ by a permutation.

Proof. Let F(Θ) = Deg[Pn(Θ)], then F(Θ̄) = Deg[Qn(Θ̄)]. From Example 4.6 we see
that F is Schur-convex, hence

F(Θ̄) = F(SΘ) ≤ F(Θ). �

Remark 5.3

(i) Deg[Pn(Θ)] is a homothetic invariant for cyclic polygons. Hence if Pn(Θ) and
Qn(Θ̄) are two n-sided homothetic cyclic polygons, that is, Θ = Θ̄ (they have
the same shape but may have different size), then they have the same degree of
irregularity. On the other hand, Deg[Pn(Θ)] = Deg[Qn(Θ̄)] does not necessarily
imply the homotheticity of Pn(Θ) and Qn(Θ̄) because Θ and Θ̄ may differ by a
permutation so that the two cyclic polygons may not be obtained from each other by
a homothetic transformation. If we consider the class of all n-sided cyclic polygons
(n > 3), the degree of irregularity can be used to classify the polygons according
to their deviations from the regularity.

(ii) There are many different ways to define the degree of irregularity for a polygon.
For more examples see [23, 24].

Theorem C Let P(Θ) be an n-sided cyclic polygon, where Θ = (θ1, θ2, . . . , θn) is the set
of the central angles subtended by the sides of P(Θ). If T is an n by n doubly stochastic
matrix other than a permutation matrix, then P(TmΘ) converges to the regular polygon
as m → ∞.
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Proof. Let F(Θ) denote the degree of irregularity of the initial polygon P(Θ). If the
matrix T is doubly stochastic other than a permutation, then

F(Θ) > F(TΘ) > F(T2Θ) > · · · = 0.

That is, the degree of irregularity of TmP is monotonically decreasing and bounded from
below by 0. Therefore the limit of {F(TmΘ)}∞m=0 exists, and it is not hard to see that
we must have

lim
m→∞

F(TmΘ) = 0.

This shows that the limit of the sequence {TmP} has to be the regular polygon. �

Proof of Theorem B. The matrix T used in a Λ-stretching is a doubly stochastic matrix
if all the components of Λ are the same real number t, where 0 < t < 1. Theorem B
follows from Theorem C immediately. �

Remark 5.4

(i) In fact, the degree of irregularity quantifies the shapes of cyclic polygons as the
isoperimetric deficit does for general polygons. Theorems A and B provide an
algorithm for changing a cyclic polygon to the regular polygon by reducing its
degree of irregularity.

(ii) If we view the vertices of a cyclic polygon P as a set of points [z1, z2, . . . , zn] that
are distributed on the circle at random, Λ-stretching is simply a redistribution of
these points. If one continues the process of this redistribution, then these n points
will be evenly spread on the circle. For some probability problems that involve
inscribed or circumscribed polygons, refer to [17] and references therein.

Let us recall the nesting triangles that were discussed in Section 2. Up to a rescaling
of their circumscribed circles to the same size, those triangles can be viewed as special
cases of sequences of cyclic n-sided polygons when n = 3. Since we are concerned with
only their shapes and the rescaling involves only simple similarity transformations, we
may treat them uniformly by the conclusion of Theorem C.

First of all, for Example 2.1, let P(Θ) be the initial triangle T0 and P(Φ) = P(TΘ) be
the second triangle T1 upon a rescaling. Then from Figure 8 it is clear that

A0 = θ1/2, B0 = θ2/2, C0 = θ3/2, A1 = φ1/2, B1 = φ2/2, C1 = φ3/2.

From the earlier observation in Section 2, we have

φ1 = 2A1 = π − A0 = π − θ1

2
=

θ2 + θ3

2
.

Similarly, φ2 = (θ3 + θ1)/2 and φ3 = (θ1 + θ2)/2.

That is, the nesting triangles in Example 2.1, up to similarity transformations, are actually
midpoint-stretching triangles. By Theorem A, they converge to the equilateral one.

Secondly, we give an alternate proof to Example 2.2. Although they might not be regarded
as special Λ-stretching triangles, they can be viewed as a simple case of Theorem C.
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Let P(Θ) be the initial triangle and P(Φ) = P(TΘ) be the the second triangle (upon
a rescaling) in Example 2.2, where Θ = (θ1, θ2, θ3) and Φ = (φ1, φ2, φ3) are the sets
of central angles of the two triangles, respectively. A direct calculation shows that the
matrix T is the following:

T =


 1/2 1/4 1/4

1/4 1/2 1/4
1/4 1/4 1/2


 ,

which is clearly a doubly stochastic matrix. Hence the limiting shape of the triangles in
Example 2.2 must be an equilateral triangle by Theorem C.

In elementary geometry, there are some equilateral triangles associated with a given
triangle. Perhaps two of the most well-known examples are the so-called Morley triangle
and Napoleon triangle (refer to [6, 8]). From a dynamic systems point of view, there exists
a transformation T acting on the set of all triangles {P(Θ)} such that TP(Θ) = P(TΘ)
is equilateral for any triangle P(Θ). It is clear that such a transformation T is the special
doubly stochastic matrix

T =


 1/3 1/3 1/3

1/3 1/3 1/3
1/3 1/3 1/3


 .

That is, we could summarize those particular transformations that change a given triangle
to an equilateral one as a result of the matrix T acting on the triangle.

Philip J. Davis has done an extensive study on the problems of nested polygons by
using circulant matrices. Although we have approached these problems from a different
perspective, all the matrices that we have used so far are circulant matrices, too. For a
detailed study of circulant matrices and related geometry problems, refer to the work of
Davis [5, 8, 9].
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6 Dynamic Properties of Cyclic Polygons
In this section we will discuss a few interesting dynamic properties of cyclic polygons.
For simplicity, let �n be the set of all n-sided polygons that are inscribed in a circle Γ of
radius r, and let TΛ be the Λ-stretching. A polygon P(Θ) ∈ �n is called a fixed polygon
of TΛ if TΛP(Θ) = P(Θ) (up to a rotation about the center of Γ). It is called a periodic
polygon with period m if, up to a rotation about the center of Γ, Tm

Λ P(Θ) = P(Θ) and
T k

Λ P(Θ) 
= P(Θ) for k = 1, 2, . . . ,m − 1.

Example 6.1 Let n = 3, Θ = (3π/5, 2π/3, 11π/15), Λ = (1/3, 1/2, 4/11). Then the
triangle P(Θ) is a fixed polygon of the transformation TΛ. In fact, if we let C be the
matrix

C =


 0 1 0

0 0 1
1 0 0


 ,

then CΘ represents a rotation on the components of Θ. Set the transformation T = C◦TΛ.
It is easy to verify that TP(Θ) = P(Θ). In general, we have the following result.

Theorem 6.2 Every Λ-stretching transformation has at least one fixed polygon.

Proof. For a given Λ = (λ1, λ2, . . . , λn), if all λi ’s are equal, where 0 < λi < 1 and
1 ≤ i ≤ n, then the regular polygon is its fixed polygon and any other polygons will
converge to the regular one by Theorem B. Suppose these λi ’s are different and consider
the following (n + 1) × (n + 1) system of linear equations

θ1 + · · · + θn = 2π

(1 − λ1)θ1 + λ2θ2 − θ3 = 0

(1 − λ2)θ2 + λ3θ3 − θ4 = 0

· · · · · · = 0

−θ1 + (1 − λn−1)θn−1 + λnθn = 0

λ1θ1 − θ2 + (1 − λn)θn = 0.

From the coefficient matrix A of the last n equations where

A =




1 − λ1 λ2 −1 0 · · · 0 0
0 1 − λ2 λ3 −1 · · · 0 0
...

...
...

...
...

...
...

−1 0 0 0 · · · 1 − λn−1 λn

λ1 −1 0 0 · · · 0 1 − λn


 ,

we see that rank(A) < n since the sum of its n rows is a 0 row. Therefore, the last n
homogeneous linear equations have non-trivial solutions with at least one free variable.
Substituting them into the first equation we get a solution for that system. Geometrically,
the system represents a Λ-stretching transformation T such that Φ = (φ1, φ2, . . . , φn) =
TΘ is obtained by rotating the components of Θ. �
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Remark 6.3 Unlike the study of ordinary matrix iterations in which the eigenvalues and
eigenvectors play the essential roles when one tries to compute Tm, our transformation
T is supposed to act on the n-tuple Θ = (θ1, . . . , θn) whose components are constrained
by the condition

∑n
i=1 θi = 2π. Thus TΘ = µΘ yields µ = 1 since we must have∑n

i=1 µθi = 2π.

In general, let P(Θ) be an n-sided cyclic polygon with the set of central angles Θ =
(θ1, θ2, . . . , θn), and let T = [ti j ] be an n × n matrix acting on Θ. Since

n∑
i=1

θi = 2π and
n∑

i=1


 n∑

j=1

ti jθ j


 = 2π,

a necessary condition for TP(Θ) = P(TΘ) to be well-defined is

n∑
i=1

ti j = 1, j = 1, 2, . . . ,n. (8)

That is, the sum of the entries in each column of T must be 1. When T is a doubly
stochastic matrix, we have seen that TmP(Θ) = P(TmΘ) converges to the regular
polygon for any given cyclic polygon P(Θ), and the only fixed polygon of T is the
regular polygon. When T is a Λ-stretching transformation, then the proof of Theorem 6.2
shows that T could have many different fixed polygons. However, if we only assume
that T satisfies equation (8), then the dynamic behavior of {TmP(Θ)}∞m=0 could be
very complex. To illustrate this and to conclude this paper, we will briefly mention the
well-known sequence of pedal triangles.

Let P0 be a triangle with inner angles A0, B0, and C0. Construct a second triangle P1

whose vertices are the feet of the altitudes of P0 and with inner angles A1, B1, and C1.
Construct a third triangle P2 in the same way, and so on. One obtains a sequence of
triangles {Pm}∞m=0 called pedal triangles that were studied more than a century ago [11].
In late 1980’s, Kingston and Synge revisited this problem [14]. They discovered many
surprising properties of such sequences and also fixed some errors that occurred in the
earlier literature. The limiting shape of the sequence {Pm}∞m=0 appeared to be almost any
shape of triangle if one chooses an appropriate initial triangle P0. Soon after their work,
a number of articles made nice connections between the sequence of pedal triangles and
symbolic dynamic systems and ergodic theory [2, 15, 22]. Since triangles are always
cyclic, if we are concerned only with the shape of its limit, we may treat the sequence
of pedal triangles as a particular case of sequences of cyclic polygons with necessary
rescaling. From [14], it is known that if P0 is an acute triangle, then the inner angles of
P1 are given by

A1 = π − 2A0, B1 = π − 2B0, C1 = π − 2C0. (9)

If P0 is an obtuse triangle, say, π > A0 > π/2, then

A1 = 2A0 − π, B1 = 2B0, C1 = 2C0. (10)
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Therefore, if Θ = (θ1, θ2, θ3) and Φ = (φ1, φ2, φ3) are the sets of central angles of P0

and P1 respectively, then we have:

(i) if the center of the circumscribed circle is inside P0 (it is an acute triangle), then

φ1 = −θ1 + θ2 + θ3, φ2 = θ1 − θ2 + θ3, φ3 = θ1 + θ2 − θ3;

that is, P1 = TP0 = P(TΘ) where

T =


−1 1 1

1 −1 1
1 1 −1


 ;

(ii) if the center of the circumscribed circle is outside of P0 (it is an obtuse triangle),
then

φ1 = θ1 − θ2 − θ3, φ2 = 2θ2, φ3 = 2θ3;

that is, P1 = SP0 = P(SΘ) where

S =


 1 −1 −1

0 2 0
0 0 2


 .

In general, we cannot represent the pedal triangles as iterations of a single transformation
matrix. For instance, if A0 = 36◦, B0 = 72◦, and C0 = 72◦ (θ1 = 72◦, θ2 = 144◦,
θ3 = 144◦), we use the matrix T to obtain the second triangle P1 = P(TΘ). But
notice that A1 = 108◦, B1 = 36◦, and C1 = 36◦, and we have to use the matrix S to
get the third triangle P2 because P1 is an obtuse triangle! Using two different matrices
to describe the limiting shape of a sequence of pedal triangles causes a more chaotic
situation. See [14] for more details. That is why we have limited our previous discussion
about sequences of cyclic polygons to some rather special cases involving only doubly
stochastic matrices and Λ-stretching. However, inspired by the abstract treatment of the
sequence of pedal triangles in terms of symbolic dynamic systems in [2], it seems very
likely that one could approach the problem of sequences of cyclic polygons from a
more abstract point of view and generalize our discussion here further to include more
complicated situations. Even within the scope of the Λ-stretching transformation, there
are still some questions to be answered, such as what conditions on T or Θ would
ensure a convergent sequence {TmP(Θ)}∞m=0 (not necessarily having a regular polygon
as the limit)? When does it have chaotic behavior? How can the appropriate definition
of entropy be introduced? These questions seem to be interesting in geometry, algebra,
and dynamic systems. On the other hand, by virtue of computer graphics, it should not
be too difficult to simulate a Λ-stretching construction on a computer and to visualize
the convergent or chaotic transformations generated by iterations of TΛ. We will leave
these questions to the interested reader and hope that the ideas and examples illustrated
in this paper will bring a deeper and broader discussion on the dynamic geometry of
polygons on the surfaces of constant curvature.
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