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1 Introduction
Matrices with a strictly dominant eigenvalue often appear in applications, e.g. when deal-
ing with systems of linear difference or differential equations with positive coefficients.
In order to study the asymptotic behaviour of such systems (when time goes to infinity) it
is useful to have simple formulas at hand for lim

k→∞
(Ak/λk ) (resp. lim

t→∞
(eAt/eλt)), where

A denotes the corresponding matrix of coefficients and λ the strictly dominant eigenvalue
of A. The aim of this paper is to provide such formulas and to show their usefulness by
applying them to finite Markov chains as well as to a model in mathematical ecology.

2 Strictly dominant eigenvalues
Definition 2.1 Let n be a positive integer, A a complex n×n-matrix and λ an eigenvalue
of A. λ is called discretely strictly dominant if λ is simple and |λ| > |µ| for every
eigenvalue µ of A different from λ. λ is called continuously strictly dominant if λ
is simple and Re(λ) > Re(µ) for every eigenvalue µ of A different from λ. An n-
dimensional column vector �b �= �0 is called a right eigenvector of A corresponding

.

Grundlage des nachfolgenden Beitrags ist die aus der Linearen Algebra bekannte Jor-
dansche Normalform einer quadratischen Matrix, welche sich mit Hilfe der Eigenwerte
und Eigenvektoren der gegebenen Matrix bestimmen lässt. Damit findet der Autor eine
elegante Berechnung des Grenzwertes der Folge der k -ten Potenzen Ak für gewisse
quadratische Matrizen A. Überraschenderweise lassen sich diese Berechnungen nun
auf die Übergangsmatrizen gewisser endlicher Markovscher Ketten anwenden. Dies
ermöglicht eine einfache Bestimmung des Endzustandes eines solchen Prozesses. jk
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to λ if A�b = λ�b. An n-dimensional row vector �c �= �0 is called a left eigenvector of A
corresponding to λ if �cA = λ�c.

The aim of this paper is to prove the following theorem and to sketch some of its
applications (for similar results cf. e.g. [10]):

Theorem 2.1 Let A be a complex square matrix, λ a simple eigenvalue of A, �b a
corresponding right eigenvector and �c a corresponding left eigenvector. Then �c�b �= 0
and the following hold:

(i) If λ is discretely strictly dominant and λ �= 0 then lim
k→∞

(Ak/λk ) = �b�c/�c�b.

(ii) If λ is continuously strictly dominant then lim
t→∞

(eAt/eλt) = �b�c/�c�b.

(Here and in the following the vectors �b and �c are also interpreted as matrices and
1 × 1-matrices are identified with the corresponding scalar.)

Proof. Let J = diag(λ, J2, . . . , Jm) be the Jordan normal form of A where for i = 2, . . . ,m
Ji is the ni × ni-matrix 



λi 1 0 . . . 0

0 λi 1
. . .

...

0 0 λi
. . . 0

...
. . .

. . .
. . . 1

0 . . . 0 0 λi




.

Then there exists a regular n × n-matrix B with A = BJB−1. Let �f denote the first
column of B and �g the first row of B−1. Since B and B−1 are regular, �f ,�g �= �0.
Because of AB = BJ, �f is a right eigenvector of A corresponding to λ and because
of B−1A = JB−1, �g is a left eigenvector of A corresponding to λ. Hence there exist
α, β ∈ C \ {0} with �f = α�b and �g = β�c. Since B−1B = I , we have �g�f = 1. This shows
�c�b = (�g�f )/(αβ) = 1/(αβ) �= 0 whence αβ = 1/(�c�b).

(i) If λ is discretely strictly dominant and λ �= 0 then

lim
k→∞

J k
i

λk

= lim
k→∞




(λi/λ)k
(k

1

)
(1/λ)(λi/λ)k−1 . . .

( k
ni−1

)
(1/λni−1)(λi/λ)k−ni+1

0 (λi/λ)k . . .
...

...
. . .

. . .
(k

1

)
(1/λ)(λi/λ)k−1

0 . . . 0 (λi/λ)k




= O
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for i = 2, . . . ,m since |λi/λ| < 1 and hence

lim
k→∞

Ak

λk = lim
k→∞

B
J k

λk B−1

= lim
k→∞

B diag(1,
J k
2

λk , . . . ,
J k
m

λk )B−1 = B diag(1,O, . . . ,O)B−1

= �f�g = αβ�b�c =
�b�c
�c�b

.

(ii) If λ is continuously strictly dominant then

lim
t→∞

eJi t

eλt

= lim
t→∞




exp((λi −λ)t) (t/1!)exp((λi −λ)t) ... (tni−1/(ni −1)!)exp((λi −λ)t)

0 exp((λi −λ)t)
. . .

...
...

. . .
. . . (t/1!)exp((λi −λ)t)

0 ... 0 exp((λi −λ)t)




=O

for i = 2, . . . ,m since Re(λi − λ) < 0 and hence

lim
t→∞

eAt

eλt = lim
t→∞

B
eJt

eλt B−1 = lim
t→∞

B diag(1,
eJ2t

eλt , . . . ,
eJmt

eλt )B−1

= B diag(1,O, . . . ,O)B−1 = �f�g = αβ�b�c =
�b�c
�c�b

. �

Corollary 2.1 Under the assumptions of Theorem 2.1 we have

lim
k→∞

Ak �d
λk =

�c�d
�c�b

�b

(
resp. lim

t→∞

eAt �d
eλt =

�c�d
�c�b

�b

)

for every complex column vector �d of the same dimension as A since (�b�c)�d = �b(�c�d) =
(�c�d)�b.

Definition 2.2 A real matrix is called non-negative (resp. positive) if all of its elements
are non-negative (resp. positive). We say that a non-negative square matrix A satisfies
condition (R) if there exists a positive integer m such that Am is positive.

We now restate the fundamental theorem on non-negative matrices (cf. [9] and [3]):

Theorem 2.2 (Frobenius-Perron Theorem) (cf. e.g. [7, p. 191]) Every non-negative
square matrix satisfying condition (R) has a positive discretely strictly dominant eigen-
value and a corresponding positive right eigenvector.



58 Elem. Math. 56 (2001)

For obtaining bounds for the discretely strictly dominant eigenvalue of a non-negative
square matrix satisfying condition (R) the following well-known result is useful (for the
sake of completeness we provide a short proof, for similar results cf. [1]):

Lemma 2.1 Every real eigenvalue of a real square matrix, to which there exists a
non-negative right eigenvector, lies between the smallest and greatest column sum of the
matrix.

Proof. Assume A = (ai j)i, j=1,...,n to be a real matrix, λ to be a real eigenvalue of A

and �b =


 b1

...
bn


 to be a non-negative right eigenvector of A corresponding to λ. Then

n∑
j=1

ai jbj = λbi for i = 1, . . . ,n and hence

λ
n∑

i=1

bi =
n∑

i=1

n∑
j=1

ai jbj =
n∑

j=1

bj

n∑
i=1

ai j ∈
[ n∑

j=1

bj min
k=1,...,n

n∑
i=1

ai k ,
n∑

j=1

bj max
k=1,...,n

n∑
i=1

ai k

]
.

Division by
n∑

i=1
bi completes the proof. �

To a non-negative square matrix we now assign a directed graph:

Definition 2.3 For a non-negative square matrix A = (ai j)i, j=1,...,n let G(A) denote the
directed graph with vertex-set {1, . . . ,n} having a directed edge from vertex i to vertex
j if and only if ai j > 0 (i, j ∈ {1, . . . ,n}). A directed graph is called strongly connected
(cf. e.g. [4]) if from any of its vertices there exists a directed walk to every other one
of its vertices.

For checking property (R) the following result is useful:

Theorem 2.3 (cf. [5]) A non-negative square matrix A satisfies condition (R) if and
only if G(A) is strongly connected and in G(A) there exist two closed directed walks
with coprime lengths. (Two integers are said to be coprime to each other if their greatest
common divisor equals 1.)

Example 2.1 If A =
(

0 1
1 0

)
then G(A) is strongly connected and all closed directed

walks have even length. Hence there do not exist closed directed walks with coprime

lengths. This is in accordance with the fact that for k ≥ 1, Ak either equals

(
0 1
1 0

)

or

(
1 0
0 1

)
. If A =


 0 1 0

1 0 1
1 0 0


 then G(A) is strongly connected since 1, 2, 1 and

1, 2, 3, 1 are closed directed walks and gcd(2, 3) = 1. Hence Theorem 2.3 is applicable.

Indeed, A5 =


 2 1 1

2 2 1
1 1 1


.

Now we will mention two applications of our result:
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3 Regular Markov chains
Consider a system which at time 0, 1, 2, . . . is in exactly one of the states 1, . . . ,n. For
i, j = 1, . . . ,n and k ≥ 0 let bj k denote the probability that the system is in state j at
time k and ai j denote the probability that the system is in state i provided that it was in
state j one time-unit before. Hence the state of the system only depends on the state one
time-unit before (and not on the state at earlier times) and the transition probabilities are
constant. This process is a finite Markov chain with transition matrix A = (ai j)i, j=1,...,n

and state vector �bk =


 b1k

...
bnk


 at time k . We have ai j ≥ 0,

n∑
i=1

ai j = 1 (such a matrix is

usually called stochastic), bj k ≥ 0 and
n∑

j=1
bj k = 1. According to the Theorem of Total

Probability (cf. e.g. [2, p. 56]) one obtains �bk+1 = A�bk for all k ≥ 0. The Markov chain
is called regular if A satisfies condition (R). Now we have the following well-known
theorem (for another proof of this theorem cf. e.g. [6]):

Theorem 3.1 The state vectors of a regular Markov chain converge to the unique right
eigenvector of the corresponding transition matrix with component sum 1 corresponding
to the eigenvalue 1.

Proof. Assume A to be the transition matrix corresponding to a regular Markov chain.
Because of Theorem 2.2 A has a positive discretely strictly dominant eigenvalue and
a corresponding positive right eigenvector. Since all the column sums of A are 1, this
eigenvalue is 1 according to Lemma 2.1. Because of Theorem 2.1 Ak and hence also
�bk converges. Since multiplication of matrices is continuous, �bk converges to the unique
right eigenvector of A with component sum 1 corresponding to the eigenvalue 1. �

4 The Leslie model
This model is a fundamental model in mathematical ecology. It is used when considering
populations which are divided into several age classes (cf. e.g. [8]).

Consider a fixed population divided into age classes 1, . . . ,n each of which is of the
length of a certain time unit. For j = 1, . . . ,n let a1 j denote the average number of
offspring of an individual chosen at random in age class j and for i = 2, . . . ,n let ai,i−1

denote the probability that an individual chosen at random in age class i −1 reaches age
class i. Put ai j := 0 otherwise. For i = 1, . . . ,n and k ≥ 0 let di k denote the size of age

class i at time k . �dk :=


 d1k

...
dnk


 is called the age class distribution at time k . It follows

�dk+1 = A�dk for k ≥ 0.

Theorem 4.1 If there exist coprime i, j ∈ {1, . . . ,n} with a1i, a1 j > 0 (this means
that the i-th and j-th age class have positive birth rate), if a21, a32, . . . , an,n−1 > 0 (this
means that all survival rates from one age class to the next are positive) and if there



60 Elem. Math. 56 (2001)

exist s, t ∈ {1, . . . ,n} with s ≤ t and ds0, a1t > 0 then A has a positive discretely strictly
dominant eigenvalue λ0 and (i) and (ii) hold:

(i) lim
k→∞

(di k/dj k ) = bi/bj for all i, j = 1, . . . ,n.

(ii) lim
k→∞

(di,k+1/di k ) = λ0 for all i = 1, . . . ,n.

Here


 b1

...
bn


 denotes a positive right eigenvector of A corresponding to λ0.

Remark 4.1 The following proof shows that almost all �dk ’s are positive. Because of (i),

�b/
n∑

i=1
bi is called the stable age distribution and because of (ii), λ0 is called the natural

growth rate of the considered population, respectively.

Proof of Theorem 4.1. Let m denote the greatest index with a1m > 0, such that the matrix
A has the structure

A =




a11 . . . . . . a1m 0 . . . 0
a21 0 . . . . . . . . . . . . 0

0
. . .

. . .
...

...
. . .

. . .
. . .

...
...

. . .
. . .

. . .
...

...
. . .

. . .
. . .

...
0 . . . . . . . . . 0 an,n−1 0




.

We then let B be the upper left m × m block of A and �fk :=


 d1k

...
dmk


 for k ≥ 0. Since

for every s, t ∈ {1, . . . ,m}, s, s − 1, . . . , 1,m,m − 1, . . . , t is a directed walk from s to
t and 1, i, i − 1, . . . , 1 and 1, j, j − 1, . . . , 1 are two closed directed walks with coprime
lengths i and j, respectively, it follows from Theorems 2.3 and 2.2 that B has a positive

discretely strictly dominant eigenvalue λ0. Let �b :=


 b1

...
bm


 and �c denote a positive

right, respectively left eigenvector of B corresponding to λ0 and put α := (�c�f0)/(�c�b).
Then

lim
k→∞

�fk

λk
0

= lim
k→∞

B k �f0
λk

0

= α�b

according to Corollary 2.1. Now |A − λI| = (−λ)n−m|B − λI| which can be seen by
expanding the first determinant n − m times by the last column. Hence λ0 is also a
discretely strictly dominant eigenvalue of A. Now, due to the special form of A the
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vectors �fk+1 and �b easily extend by

dm+1,k+1 = am+1,mdmk

...

dn,k+1 = an,n−1dn−1,k

for k ≥ 0 and bi := ai,i−1 · . . . ·am+1,mbm/λ
i−m
0 for i = m+1, . . . ,n to the corresponding

age class distribution and positive right eigenvector corresponding to λ0 of the entire
matrix A, respectively, and lim

k→∞
(di k/λ

k
0 ) = αbi for i = 1, . . . ,n. Since �b is positive,

almost all �dk ’s are positive. Now (i) and (ii) easily follow. �
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