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1 Introduction

Recently, the study of convex polygons has gained a renewed interest because of their
importance in computer graphics, geometric learning theory, and artificial intelligence,
for instance. Surprisingly, many simple questions are unanswered in this field. Let us start
with a beautiful example. We say that a set of points in the plane is in general position
if no three of the points lie on a line. Decades ago, Erdds, Klein, and Szekeres posed the
problem of determining the maximum number f(k) of points in general position in the
plane so that no k points form the vertex set of a convex polygon. Erd6s and Szekeres
[3] proved that

22 < f(k) < <2kk__24),

Fragen zu speziellen Konfigurationseigenschaften von Punkten in der Ebene sind seit
jeher Gegenstand von Untersuchungen in der kombinatorischen Geometrie. Heutzutage
kommt diesen Fragestellungen aufgrund der Anwendungsmoglichkeiten beim Design
von Computergraphiken eine besondere Bedeutung zu. So stellt sich bei vorgelegter
natiirlicher Zahl k zum Beispiel die Frage nach der Maximalzahl von Punkten in
allgemeiner Lage in der Ebene mit der Eigenschaft, dass in keinem Falle k dieser
Punkte die Ecken eines konvexen Polygons bilden. Dieses Problem ist fiir k > 5 bis
heute ungelost! In dem vorliegenden Beitrag von A. Gulyés und L. Szab6 wird mit Hilfe
eines raffinierten vollstindigen Induktionsbeweises eine verwandte Problemstellung
gelost. jk
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and conjectured that f(k) is equal to the lower bound. Surprisingly, this conjecture has
been verified only for k = 3,4, 5. Recently, the upper bound has been slightly improved
by many authors, see [2, 6, 7]. The current record, due to T6th and Valtr [7], is

f(k) < <2kk‘2'5) i

Later, Erds also posed the problem of determining the maximum number g(k) of points
in general position in the plane so that no k points form the vertex set of an empty convex
polygon, i.e., a convex polygon whose interior is disjoint from the point set. It is easy
to see that ¢(3) = 2 and g(4) = 4. Harborth [4] proved that g(5) = 9, and Horton
[5] showed that g(k) is infinite for k > 7. It is a challenging open problem to decide
whether g(6) is finite.

Let gx (1) denote the minimum number of empty convex k-gons induced by the k-tuples
of a set of n points in general position in the plane. Bardny and Fiiredi [1] proved that
g(n) > n* — O(nlogn), g4(n) > tn* — O(n), and gs(n) > [1n/10]. We note that the
last bound can easily be improved to gs(n) > [(n — 4)/6]. On the other hand, Valtr [8]
showed that g3(n) < 1.8n%, gu(n) < 2.42n°, and gs(n) < 1.46n°.

It is obvious that the k-tuples of a set of # points in general position in the plane always
induce a family of [n/(g(k)+ 1)] disjoint empty convex k-gons, and this bound is tight
for k = 3. In this paper we consider the case k = 4 and we prove

Theorem 1 The quadruples of a set of n points in general position in the plane always
induce a family of [2n/9] disjoint empty convex quadrangles.

We also show that the bound [2711/9] cannot be improved for n < 21.

2 Proof of Theorem 1

First we prove that any set % of nine points in general position in the plane contains two
disjoint empty convex quadrangles. Let py,pa, ..., pn denote the vertices of the convex
hull of % in a counterclockwise order (we will use the convention that p; = p; if i = j
(mod m)). Observe that if Ap;_pipi+1 is an empty triangle of & for some 1 <i < m,
then & contains two disjoint empty quadrangles. Indeed, among P \ {pi_1,pi,pi+1}
choose a point » whose distance from the line p;_;p;y1 is minimal. Now p;_ip;pi 17 is
an empty convex quadrangle and the remaining five points of P also contain an empty
convex quadrangle which is obviously disjoint from p;_ip;p;+1r. Therefore, in what
follows, we will assume that Ap;_ p;p; is not empty for 1 < i < m. This immediately
implies among others that m < 6.

Case 1. m = 6. Let q1,42, 43 denote the points of % lying in the interior of the con-
vex hull of %. Without loss of generality we may assume that g; € Apai_opari—1p2i N
Apari—1p2ipaiv1 for i = 1,2,3 (do not forget that no Ap;_p;pit1 is empty, 1 <i < 6).
Then p14193ps is an empty convex quadrangle and it is separated from the remaining
five points of P by the line p,ps. Now we are done, since the set of the remaining five
points necessarily contains an empty convex quadrangle, which is, of course, disjoint

from p141g3ps.
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Case 2. m = 5. Let q1,4,93,q4 denote the points of &P lying in the interior of the
convex hull of . A point of {q1,4,93,94} will be called special if it is contained
in Api_opi—1pi N Api—i1pipi+1 for some 1 < i < 5. Obviously, at least one point of
{q1,92,93,44} is special.

Case 2.1. Exactly one point of {q1, 42, g3, G4 }, say qa, is special. Without loss of generality
we may assume that g4 € Ap paps N Apspaps and q; € Ap;_opipive N Api_1pipiv1 for
i =1,2,3. Now p1q1q2p2 and p3q3qaps are disjoint empty convex quadrangles (they are
separated by the line joining ps and 7p3 N P2ps).

Case 2.2. Exactly two points of {41,492, 43,G4}, say qi, qa, are special. Then {g;,4.} C
Ap;_1pipis1 for at most one 1 <i <5,

Case 2.2.1. For some 1 < i < 5, the set {qi,qo} C Api_ipipi+1- Without loss of
generality we may assume that g; € Ap; opj_1p; N Apj_1pjpj+1 for j = 1,2 and
gi € Apjapjpj2 N Apj_1pjpjs1 for j = 3,4. Now p3psqaqs is an empty convex
quadrangle and it is separated from the remaining five points of P by p,ps.

Case 2.2.2. No Ap;_p;ipi+1 contains both g, and ¢, 1 < i < 5. Without loss of
generality we may assume that q; € Appaps N Api1paps, G2 € Apapsps N Apspaps, and
g3 € Apipaps N Apapsps. Let u = pogs N Paps and v = p3q3 N Pspr (see Figure 1).

Fig. 1

If g4 is contained in the quadrangle p,p3p4it, then pipsqsq; is an empty convex quadrangle
and it is separated from the remaining five points of % by p,gs. Similarly, if g4 is
contained in the quadrangle p p,p3v, then p4psqaqn is an empty convex quadrangle and
it is separated from the remaining five points of % by pzgs. Finally, if g, is contained in
the quadrangle upsvgs, then pop3go4q; is an empty convex quadrangle and it is separated
from the remaining five points of P by p;pa.

Case 2.3. Exactly three points of {qi,q2, 93,494}, say 41, qz, g3, are special.
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Case 2.3.1. For some 1 < i < 5, Ap;_opi—1pi N Api_1pipi+1 contains two points
of {q1,42,93}. Without loss of generality we may assume that {q;,4.} C Apipaps N
Apipaps, 43 € Apipaps N Apapspa, and qs € Apapapr N Apspaps. Now p3paqaqs is an
empty convex quadrangle and it is separated from the remaining five points of % by

paps.

Case 2.3.2. No Ap;_opi—1piNApi_1pipi+1 contains two points of {q;, g2, g3}, 1 <1 <5.
Then, among the triangles Ap;_p;piy1, 1 < i < 5, one or two contain two points of

{91, 02,93}

Case 2.3.2.1. Among the triangles Ap;_ip;pit1, 1 < i <5, exactly one contains two
points of {41, g2, g3 }. Without loss of generality we may assume that g; € Ap;_1p;pj+1N
Apjpjripjv2 for j = 1,2, g3 € Apspaps N Apapspi, and g4 is not separated from g, by
the line poq3. Now pipsqsq; is an empty convex quadrangle and it is separated from the
remaining five points of P by p.gs.

Case 2.3.2.2. Among the triangles Ap;_ip;pi+1, 1 < i < 5, exactly two contain two
points of {41, 42, q3}. Without loss of generality we may assume that g; € Ap;_1pjpj+1N
Apjpj+1p]-+2 for j = 1,2,3, and g4 € Apopsps N Apipaps. Now pipsqsqi is an empty
convex quadrangle and it is separated from the remaining five points of P by papa.

Case 2.4. All four points of {qi,4>,43,94} are special. Then there are three points of
{91,92,93,94}. say qi,q2, g3, so that no Ap;_opi_1pi N Api_1pipi+1 contains more than
one point of {g1,42,43}, 1 < i < 5. Without loss of generality we may assume that
qj € Opj—1pjpint N Apjpjipj+a for j = 1,2.

Case 2.4.1. The point g3 is in Apspaps N Apapspi. Without loss of generality we may
assume that g4 is not separated from ¢, by the line p.g3. Now ppsq3qi is an empty
convex quadrangle and it is separated from the remaining five points of P by p,gs.

Case 2.4.2. The point g3 is contained in Apyp3psNAp3paps or ApapspiNApspip2, say in
Ap2p3p4 ﬂAp3p4p5. Then G4 is contained in AP3P4P5 n Ap4p5r)1 or Ap4p5p1 n Ap5p1p2,
say in Apspaps N Apapsp: (do not forget that Appsps is not empty). Now pipsqaq; is
an empty convex quadrangle and it is separated from the remaining five points of % by

paps.

Case 3. m = 4. Let q1, 2,93, g4, 45 denote the points of P lying in the interior of the
convex hull of P. Let u = p1p3 N P2pa.

Case 3.1. No g1, ¢2, 43, g4, g5 is contained in Ap;up;; for some 1 <i < 4, say in Apup,.
Without loss of generality we may assume that £q,p1p2 < quplpz for2 < j <5, and
Apigig2 < Apiqige for 3 < k < 5. Now q; € Apup; and the line g;q, intersects
P1pa since Apipops and Apip,ps are not empty. Then p;p,q1g, is an empty convex
quadrangle and it is separated from the remaining five points of P by 414,.

Case 3.2. All Apjup;i, contain at least one point of {qi,42,43,q4,95}, 1 < i < 4.

Without loss of generality we may assume that q; € Ap;up;y; for 1 < i < 4 and
gs € Apsup, (see Figure 2).
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Fig. 2

Case 3.2.1. The line q4g5 does not intersect Pips. If q4gs separates both g; and g3 from
p1 and ps4, then pipsqaqs is an empty convex quadrangle and it is separated from the
remaining five points of % by gags. If g4gs does not separate g3 and q; from p; and py,
then p1paqi143 is an empty convex quadrangle and it is separated from the remaining five
points of % by g4gs. Finally, if exactly one point of {g;, 43}, say 4i, is separated from p,
and p4 by qags, then pipsqaqs is an empty convex quadrangle and it is separated from
the remaining five points of % by gags.

Case 3.2.2. The line qu44s intersects P1ps. Without loss of generality we may assume that
gags is disjoint from Ap up,. Now piq144gs is an empty convex quadrangle and it is
separated from the remaining five points of % by pspa.

Case 4. m = 3. Let q1, 2, 43, G, G5, §o denote the points of P lying in the interior of the
convex hull of %. Without loss of generality we may assume that £p,p1q1 < £papigi
for 2 <i <6 and Lpiqige < Apiqigi < £piqige for 3 < i < 5. Let u = piq1 N P2p3
and v = poq; NP1p3 (see Figure 3).

p3

Fig. 3

It is obvious that Ap;up, is empty. If Ap;qv is not empty, then p;p,q14, is an empty
convex quadrangle and it is separated from the remaining five points of % by g;4,. Thus,
in what follows, we will assume that Ap;q,v is empty. If Ag,p3v is empty, then pip3q2qi
is an empty convex quadrangle and it is separated from the remaining five points of %
by gi14». Thus, in what follows, we will also assume that Ag;p3v is not empty. Similarly,
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it Aqipsu is empty, then prp3geq: is an empty convex quadrangle and it is separated
from the remaining five points of % by g;4e. Thus, in what follows, we will also assume
that Ag psu is not empty. For technical reasons, in the remaining part of the proof we
will disregard the special choice of ¢, and gs.

Case 4.1. Exactly one point of {g,43,q4,4s,q6} is contained in Ag;ps;v or Aqipsu.
Without loss of generality we may assume that ¢, is contained in Ag;psu and g3, 44, gs, g6
are contained in Ag;p30.

Case 4.1.1. Not all g3, g4, g5, ge are separated from p3 by p,4,. Without loss of generality
we may assume that {p3qoq3 < Lp3qag; for 4 < i < 6. Now pop3qaqe is an empty
convex quadrangle and it is separated from the remaining five points of P by g,43.

Case 4.1.2. All 43, 44,95, g6 are separated from p3 by pog,. Suppose that p;p3 and g4,
are not parallel (the case where pip3 and g, are parallel can be settled similarly). Let
w = pip3 N q19». Without loss of generality we may assume that £q,wqs < £q,wg; for
4 <i < 6 (see Figure 4).

Fig. 4

Now p»qi1434, is an empty convex quadrangle and it is separated from the remaining five
points of &% by wgs.

Case 4.2. Exactly two points of {4, 43,4s,9s,qe} are contained in Agp3v or Aqpsu.
Without loss of generality we may assume that g,,q; are contained in Agp3u and
4, s, qe are contained in Aqp3v.

Case 4.2.1. The line g,q3 does not intersect p,p3z. Now pop3q3q, is an empty convex
quadrangle and it is separated from the remaining five points of % by psq;.

Case 4.2.2. The line g,q3 intersects pops and 71p3. Now parq3gp41 is an empty convex
quadrangle and it is separated from the remaining five points of P by p3q;.
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Case 4.2.3. The line ¢q; intersects pp3 and g;p;. Without loss of generality we may
assume that g3 separates ¢, from g,q3 N Pop3 (see Figure 5). If piqagsqe is a convex
quadrangle then we are done. Indeed, now piq4gsqgs is empty and it is separated from
the remaining five points of % by p3g;. Thus, in what follows, we will assume, without
loss of generality, that g, is contained in Ap;gsgs. We will also assume that g separates
gs from gsqs N P1p3 if gsqs intersects Pips and that gs separates gs from gsgs N Paqp if
g5q¢ does not intersect Pips.

Fig. 5

Case 4.2.3.1. The line gsqs separates p3 from g, and g3. If gsgs does not intersect pp3,
then p p3ge4s is an empty convex quadrangle and it is separated from the remaining five
points of % by gsgs. On the other hand, if gsq¢ intersects pip3, then either pip3gegs is
an empty convex quadrangle and it is separated from the remaining five points of % by
Jage O P3Gegsaqs is an empty convex quadrangle and it is separated from the remaining
five points of &P by pigs.

Case 4.2.3.2. The line gsqs separates ¢, and g3. If gsge intersects pip3, then pi1qig2q4
and p3q3gsqe are disjoint empty convex quadrangles. On the other hand, if gsgs does not
intersect P1p3, then p3qagsqs and either p1qi14295 or p2gi14sq. are disjoint empty convex
quadrangles.

Case 4.2.3.3. The line gsgs does not separate p3 from ¢, and g3. If gsg¢ does not intersect
P1P3, then p2q1gsqe is an empty convex quadrangle and it is separated from the remaining
five points of & by gsge. If gsq¢ intersects pips and p3qy, then psgeqoqs and pigagsq
are disjoint empty convex quadrangles. Thus, we will assume that gsgs intersects pip3
and piqi. If p1p3geqs is a convex quadrangle, then we are done. Indeed, now pp3gsqs
is empty and it is separated from the remaining five points of % by p3ge. Thus, we
will assume that p3gsqsgs is an empty convex quadrangle. If p3 and g3 are separated by
p19s, then p3qgeqaqs is separated from the remaining five points of % by p;gs. On the
other hand, if p3 and g3 are not separated by p;gs, then p3gegsqs is an empty convex
quadrangle, and either p;414245 or p>q14s4> is an empty convex quadrangle disjoint from

P34644q3-
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Thus we have proved that any set % of nine points in general position in the plane
contains two disjoint empty convex quadrangles.

The proof of Theorem 1 will be done by induction on n. We know that the assertion is
true for n < 9. Let n > 10 and consider a set % of n points in general position. It is
obvious that there exists a line which cuts P into two disjoint sets ; and P, of 9 and
n — 9 points, respectively. Then, by the induction hypothesis, P contains two disjoint
empty convex quadrangles and %, contains [2(n — 9)/9] = [2n/9] — 2 disjoint empty
convex quadrangles. Thus & contains [212/9] disjoint empty convex quadrangles.

3 Constructions

It is easy to find a set of eight points in general position in the plane which does not
contain two disjoint empty convex quadrangles. Indeed, if pi, p2, p3, ps are the vertices
of a square in a counterclockwise order and g; is an interior point of p;p,p3p4 sufficiently
close to the midpoint of Zipir1, 1 <i <4, then {p1,p2,P3,P4,91, G2, 3,94} is just such
a point set.

Next we show that, for each m > 3, there exists a set of n = 4m + 1 points in general
position which does not contain m disjoint empty convex quadrangles.

Let p1,p2, ..., p2m be the vertices of a regular 2m-gon C in a counterclockwise order
and let ¢; be an interior point of C sufficiently close to the midpoint of pipiy, 1 <
i < 2m. Furthermore, let ¥ be a point sufficiently close to the centre of C so that
P={pi1,....P2m:q1,---.Gm, 7} is in general position. Suppose, for contradiction, that
% contains m disjoint empty convex quadrangles Qy, Qa, ..., Q.

Let p;, and p;, two vertices of C so that they belong to Q; for some 1 <i < m and the
number [ of vertices of C on the shorter arc of C bounded by p;, and p;, is as small as
possible. Now, a very simple counting argument shows that [ < 4. Thus, without loss of
generality we may assume that i; = 1 and i, € {2,3,4}. If i, = 2, then g, cannot be a
vertex of a quadrangle. If i, = 3, then p, cannot be a vertex of a quadrangle. Finally, if
ip = 4, then p; or p3 cannot be a vertex of a quadrangle. Next, let p;, and pj, be two
vertices of the longer arc of C bounded by p;, and p;, so that they belong to Q; for some
1 < j <'m and the number [" of vertices of C on the arc of C bounded by p;, and pj,
is as small as possible. Again, a very simple counting argument shows that I’ < 4 and,
similarly as before, we can find a point of & different from g;, p2, p3 which cannot be a
vertex of a quadrangle. Thus % necessarily contains two points which are not vertices
of the quadrangles Q1,Q>,...,Q2y, a contradiction.

Note that the above constructions show that the bound in Theorem 1 is tight for n < 21.
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