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1 Introduction

Recently, the study of convex polygons has gained a renewed interest because of their
importance in computer graphics, geometric learning theory, and artificial intelligence,
for instance. Surprisingly, many simple questions are unanswered in this field. Let us start
with a beautiful example. We say that a set of points in the plane is in general position
if no three of the points lie on a line. Decades ago, Erdős, Klein, and Szekeres posed the
problem of determining the maximum number f(k) of points in general position in the
plane so that no k points form the vertex set of a convex polygon. Erdős and Szekeres
[3] proved that

2k−2 ≤ f(k) ≤
(

2k − 4
k − 2

)
,

.

Fragen zu speziellen Konfigurationseigenschaften von Punkten in der Ebene sind seit
jeher Gegenstand von Untersuchungen in der kombinatorischen Geometrie. Heutzutage
kommt diesen Fragestellungen aufgrund der Anwendungsmöglichkeiten beim Design
von Computergraphiken eine besondere Bedeutung zu. So stellt sich bei vorgelegter
natürlicher Zahl k zum Beispiel die Frage nach der Maximalzahl von Punkten in
allgemeiner Lage in der Ebene mit der Eigenschaft, dass in keinem Falle k dieser
Punkte die Ecken eines konvexen Polygons bilden. Dieses Problem ist für k > 5 bis
heute ungelöst! In dem vorliegenden Beitrag von A. Gulyás und L. Szabó wird mit Hilfe
eines raffinierten vollständigen Induktionsbeweises eine verwandte Problemstellung
gelöst. jk
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and conjectured that f(k) is equal to the lower bound. Surprisingly, this conjecture has
been verified only for k = 3, 4, 5. Recently, the upper bound has been slightly improved
by many authors, see [2, 6, 7]. The current record, due to Tóth and Valtr [7], is

f(k) ≤
(

2k − 5
k − 2

)
+ 1.

Later, Erdős also posed the problem of determining the maximum number g(k) of points
in general position in the plane so that no k points form the vertex set of an empty convex
polygon, i.e., a convex polygon whose interior is disjoint from the point set. It is easy
to see that g(3) = 2 and g(4) = 4. Harborth [4] proved that g(5) = 9, and Horton
[5] showed that g(k) is infinite for k ≥ 7. It is a challenging open problem to decide
whether g(6) is finite.

Let gk (n) denote the minimum number of empty convex k -gons induced by the k -tuples
of a set of n points in general position in the plane. Bárány and Füredi [1] proved that
g3(n) ≥ n2 − O(n log n), g4(n) ≥ 1

4 n2 − O(n), and g5(n) ≥ [n/10]. We note that the
last bound can easily be improved to g5(n) ≥ [(n − 4)/6]. On the other hand, Valtr [8]
showed that g3(n) ≤ 1.8n2, g4(n) ≤ 2.42n2, and g5(n) ≤ 1.46n2.

It is obvious that the k -tuples of a set of n points in general position in the plane always
induce a family of [n/(g(k)+ 1)] disjoint empty convex k -gons, and this bound is tight
for k = 3. In this paper we consider the case k = 4 and we prove

Theorem 1 The quadruples of a set of n points in general position in the plane always
induce a family of [2n/9] disjoint empty convex quadrangles.

We also show that the bound [2n/9] cannot be improved for n ≤ 21.

2 Proof of Theorem 1
First we prove that any set � of nine points in general position in the plane contains two
disjoint empty convex quadrangles. Let p1, p2, . . . , pm denote the vertices of the convex
hull of � in a counterclockwise order (we will use the convention that pi = pj if i ≡ j
(mod m)). Observe that if �pi−1pipi+1 is an empty triangle of � for some 1 ≤ i ≤ m,
then � contains two disjoint empty quadrangles. Indeed, among � \ {pi−1, pi, pi+1}
choose a point r whose distance from the line pi−1pi+1 is minimal. Now pi−1pipi+1r is
an empty convex quadrangle and the remaining five points of � also contain an empty
convex quadrangle which is obviously disjoint from pi−1pipi+1r. Therefore, in what
follows, we will assume that �pi−1pipi+1 is not empty for 1 ≤ i ≤ m. This immediately
implies among others that m ≤ 6.

Case 1. m = 6. Let q1, q2, q3 denote the points of � lying in the interior of the con-
vex hull of �. Without loss of generality we may assume that qi ∈ �p2i−2p2i−1p2i ∩
�p2i−1p2ip2i+1 for i = 1, 2, 3 (do not forget that no �pi−1pipi+1 is empty, 1 ≤ i ≤ 6).
Then p1q1q3p6 is an empty convex quadrangle and it is separated from the remaining
five points of � by the line p2p5. Now we are done, since the set of the remaining five
points necessarily contains an empty convex quadrangle, which is, of course, disjoint
from p1q1q3p6.
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Case 2. m = 5. Let q1, q2, q3, q4 denote the points of � lying in the interior of the
convex hull of �. A point of {q1, q2, q3, q4} will be called special if it is contained
in �pi−2pi−1pi ∩ �pi−1pipi+1 for some 1 ≤ i ≤ 5. Obviously, at least one point of
{q1, q2, q3, q4} is special.

Case 2.1. Exactly one point of {q1, q2, q3, q4}, say q4, is special. Without loss of generality
we may assume that q4 ∈ �p1p4p5 ∩�p3p4p5 and qi ∈ �pi−2pipi+2 ∩�pi−1pipi+1 for
i = 1, 2, 3. Now p1q1q2p2 and p3q3q4p4 are disjoint empty convex quadrangles (they are
separated by the line joining p5 and p1p3 ∩ p2p4).

Case 2.2. Exactly two points of {q1, q2, q3, q4}, say q1, q2, are special. Then {q1, q2} ⊆
�pi−1pipi+1 for at most one 1 ≤ i ≤ 5.

Case 2.2.1. For some 1 ≤ i ≤ 5, the set {q1, q2} ⊆ �pi−1pipi+1. Without loss of
generality we may assume that qj ∈ �pj−2pj−1pj ∩ �pj−1pjpj+1 for j = 1, 2 and
qj ∈ �pj−2pjpj+2 ∩ �pj−1pjpj+1 for j = 3, 4. Now p3p4q4q3 is an empty convex
quadrangle and it is separated from the remaining five points of � by p2p5.

Case 2.2.2. No �pi−1pipi+1 contains both q1 and q2, 1 ≤ i ≤ 5. Without loss of
generality we may assume that q1 ∈ �p1p2p5 ∩�p1p2p3, q2 ∈ �p2p3p4 ∩�p3p4p5, and
q3 ∈ �p1p4p5 ∩�p2p3p5. Let u = p2q3 ∩ p4p5 and v = p3q3 ∩ p5p1 (see Figure 1).

p1

p2 p5

p3 p4

u

vq1

q2

q3

Fig. 1

If q4 is contained in the quadrangle p2p3p4u, then p1p5q3q1 is an empty convex quadrangle
and it is separated from the remaining five points of � by p2q3. Similarly, if q4 is
contained in the quadrangle p1p2p3v, then p4p5q3q2 is an empty convex quadrangle and
it is separated from the remaining five points of � by p3q3. Finally, if q4 is contained in
the quadrangle up5vq3, then p2p3q2q1 is an empty convex quadrangle and it is separated
from the remaining five points of � by p1p4.

Case 2.3. Exactly three points of {q1, q2, q3, q4}, say q1, q2, q3, are special.
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Case 2.3.1. For some 1 ≤ i ≤ 5, �pi−2pi−1pi ∩ �pi−1pipi+1 contains two points
of {q1, q2, q3}. Without loss of generality we may assume that {q1, q2} ⊆ �p1p4p5 ∩
�p1p2p5, q3 ∈ �p1p2p3 ∩�p2p3p4, and q4 ∈ �p2p4p1 ∩�p3p4p5. Now p3p4q4q3 is an
empty convex quadrangle and it is separated from the remaining five points of � by
p2p5.

Case 2.3.2. No �pi−2pi−1pi∩�pi−1pipi+1 contains two points of {q1, q2, q3}, 1 ≤ i ≤ 5.
Then, among the triangles �pi−1pipi+1, 1 ≤ i ≤ 5, one or two contain two points of
{q1, q2, q3}.

Case 2.3.2.1. Among the triangles �pi−1pipi+1, 1 ≤ i ≤ 5, exactly one contains two
points of {q1, q2, q3}. Without loss of generality we may assume that qj ∈ �pj−1pjpj+1∩
�pjpj+1pj+2 for j = 1, 2, q3 ∈ �p3p4p5 ∩�p4p5p1, and q4 is not separated from q2 by
the line p2q3. Now p1p5q3q1 is an empty convex quadrangle and it is separated from the
remaining five points of � by p2q3.

Case 2.3.2.2. Among the triangles �pi−1pipi+1, 1 ≤ i ≤ 5, exactly two contain two
points of {q1, q2, q3}. Without loss of generality we may assume that qj ∈ �pj−1pjpj+1∩
�pjpj+1pj+2 for j = 1, 2, 3, and q4 ∈ �p2p3p5 ∩ �p1p4p5. Now p1p5q4q1 is an empty
convex quadrangle and it is separated from the remaining five points of � by p2p4.

Case 2.4. All four points of {q1, q2, q3, q4} are special. Then there are three points of
{q1, q2, q3, q4}, say q1, q2, q3, so that no �pi−2pi−1pi ∩�pi−1pipi+1 contains more than
one point of {q1, q2, q3}, 1 ≤ i ≤ 5. Without loss of generality we may assume that
qj ∈ �pj−1pjpj+1 ∩�pjpj+1pj+2 for j = 1, 2.

Case 2.4.1. The point q3 is in �p3p4p5 ∩ �p4p5p1. Without loss of generality we may
assume that q4 is not separated from q2 by the line p2q3. Now p1p5q3q1 is an empty
convex quadrangle and it is separated from the remaining five points of � by p2q3.

Case 2.4.2. The point q3 is contained in �p2p3p4∩�p3p4p5 or �p4p5p1∩�p5p1p2, say in
�p2p3p4∩�p3p4p5. Then q4 is contained in �p3p4p5∩�p4p5p1 or �p4p5p1∩�p5p1p2,
say in �p3p4p5 ∩�p4p5p1 (do not forget that �p1p4p5 is not empty). Now p1p5q4q1 is
an empty convex quadrangle and it is separated from the remaining five points of � by
p2p4.

Case 3. m = 4. Let q1, q2, q3, q4, q5 denote the points of � lying in the interior of the
convex hull of �. Let u = p1p3 ∩ p2p4.

Case 3.1. No q1, q2, q3, q4, q5 is contained in �piupi+1 for some 1 ≤ i ≤ 4, say in �p1up2.
Without loss of generality we may assume that �q1p1p2 < �qjp1p2 for 2 ≤ j ≤ 5, and
�p1q1q2 < �p1q1qk for 3 ≤ k ≤ 5. Now q1 ∈ �p2up3 and the line q1q2 intersects
p1p4 since �p1p2p3 and �p1p2p4 are not empty. Then p1p2q1q2 is an empty convex
quadrangle and it is separated from the remaining five points of � by q1q2.

Case 3.2. All �piupi+1 contain at least one point of {q1, q2, q3, q4, q5}, 1 ≤ i ≤ 4.
Without loss of generality we may assume that qi ∈ �piupi+1 for 1 ≤ i ≤ 4 and
q5 ∈ �p4up1 (see Figure 2).
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Case 3.2.1. The line q4q5 does not intersect p1p4. If q4q5 separates both q1 and q3 from
p1 and p4, then p1p4q4q5 is an empty convex quadrangle and it is separated from the
remaining five points of � by q4q5. If q4q5 does not separate q3 and q1 from p1 and p4,
then p1p4q1q3 is an empty convex quadrangle and it is separated from the remaining five
points of � by q4q5. Finally, if exactly one point of {q1, q3}, say q1, is separated from p1

and p4 by q4q5, then p1p4q4q3 is an empty convex quadrangle and it is separated from
the remaining five points of � by q4q5.

Case 3.2.2. The line q4q5 intersects p1p4. Without loss of generality we may assume that
q4q5 is disjoint from �p1up2. Now p1q1q4q5 is an empty convex quadrangle and it is
separated from the remaining five points of � by p2p4.

Case 4. m = 3. Let q1, q2, q3, q4, q5, q6 denote the points of � lying in the interior of the
convex hull of �. Without loss of generality we may assume that �p2p1q1 < �p2p1qi

for 2 ≤ i ≤ 6 and �p1q1q2 < �p1q1qi < �p1q1q6 for 3 ≤ i ≤ 5. Let u = p1q1 ∩ p2p3

and v = p2q1 ∩ p1p3 (see Figure 3).

p1 p2

p3

uv

q1

Fig. 3

It is obvious that �p1up2 is empty. If �p1q1v is not empty, then p1p2q1q2 is an empty
convex quadrangle and it is separated from the remaining five points of � by q1q2. Thus,
in what follows, we will assume that �p1q1v is empty. If �q1p3v is empty, then p1p3q2q1

is an empty convex quadrangle and it is separated from the remaining five points of �
by q1q2. Thus, in what follows, we will also assume that �q1p3v is not empty. Similarly,
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if �q1p3u is empty, then p2p3q6q1 is an empty convex quadrangle and it is separated
from the remaining five points of � by q1q6. Thus, in what follows, we will also assume
that �q1p3u is not empty. For technical reasons, in the remaining part of the proof we
will disregard the special choice of q2 and q6.

Case 4.1. Exactly one point of {q2, q3, q4, q5, q6} is contained in �q1p3v or �q1p3u.
Without loss of generality we may assume that q2 is contained in �q1p3u and q3, q4, q5, q6

are contained in �q1p3v.

Case 4.1.1. Not all q3, q4, q5, q6 are separated from p3 by p2q2. Without loss of generality
we may assume that �p3q2q3 < �p3q2qi for 4 ≤ i ≤ 6. Now p2p3q3q2 is an empty
convex quadrangle and it is separated from the remaining five points of � by q2q3.

Case 4.1.2. All q3, q4, q5, q6 are separated from p3 by p2q2. Suppose that p1p3 and q1q2

are not parallel (the case where p1p3 and q1q2 are parallel can be settled similarly). Let
w = p1p3 ∩ q1q2. Without loss of generality we may assume that �q1wq3 < �q1wqi for
4 ≤ i ≤ 6 (see Figure 4).

p1
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Fig. 4

Now p2q1q3q2 is an empty convex quadrangle and it is separated from the remaining five
points of � by wq3.

Case 4.2. Exactly two points of {q2, q3, q4, q5, q6} are contained in �q1p3v or �q1p3u.
Without loss of generality we may assume that q2, q3 are contained in �q1p3u and
q4, q5, q6 are contained in �q1p3v.

Case 4.2.1. The line q2q3 does not intersect p2p3. Now p2p3q3q2 is an empty convex
quadrangle and it is separated from the remaining five points of � by p3q1.

Case 4.2.2. The line q2q3 intersects p2p3 and q1p3. Now p2q3q2q1 is an empty convex
quadrangle and it is separated from the remaining five points of � by p3q1.
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Case 4.2.3. The line q2q3 intersects p2p3 and q1p2. Without loss of generality we may
assume that q3 separates q2 from q2q3 ∩ p2p3 (see Figure 5). If p1q4q5q6 is a convex
quadrangle then we are done. Indeed, now p1q4q5q6 is empty and it is separated from
the remaining five points of � by p3q1. Thus, in what follows, we will assume, without
loss of generality, that q4 is contained in �p1q5q6. We will also assume that q6 separates
q5 from q5q6 ∩ p1p3 if q5q6 intersects p1p3 and that q6 separates q5 from q5q6 ∩ p3q1 if
q5q6 does not intersect p1p3.

p1 p2

p3

uv

q1

q2

q3

Fig. 5

Case 4.2.3.1. The line q5q6 separates p3 from q2 and q3. If q5q6 does not intersect p1p3,
then p1p3q6q4 is an empty convex quadrangle and it is separated from the remaining five
points of � by q5q6. On the other hand, if q5q6 intersects p1p3, then either p1p3q6q4 is
an empty convex quadrangle and it is separated from the remaining five points of � by
q4q6 or p3q6q4q5 is an empty convex quadrangle and it is separated from the remaining
five points of � by p1q5.

Case 4.2.3.2. The line q5q6 separates q2 and q3. If q5q6 intersects p1p3, then p1q1q2q4

and p3q3q5q6 are disjoint empty convex quadrangles. On the other hand, if q5q6 does not
intersect p1p3, then p3q4q6q3 and either p1q1q2q5 or p2q1q5q2 are disjoint empty convex
quadrangles.

Case 4.2.3.3. The line q5q6 does not separate p3 from q2 and q3. If q5q6 does not intersect
p1p3, then p2q1q5q6 is an empty convex quadrangle and it is separated from the remaining
five points of � by q5q6. If q5q6 intersects p1p3 and p3q1, then p3q6q2q3 and p1q4q5q1

are disjoint empty convex quadrangles. Thus, we will assume that q5q6 intersects p1p3

and p1q1. If p1p3q6q4 is a convex quadrangle, then we are done. Indeed, now p1p3q6q4

is empty and it is separated from the remaining five points of � by p3q6. Thus, we
will assume that p3q6q4q5 is an empty convex quadrangle. If p3 and q3 are separated by
p1q5, then p3q6q4q5 is separated from the remaining five points of � by p1q5. On the
other hand, if p3 and q3 are not separated by p1q5, then p3q6q4q3 is an empty convex
quadrangle, and either p1q1q2q5 or p2q1q5q2 is an empty convex quadrangle disjoint from
p3q6q4q3.
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Thus we have proved that any set � of nine points in general position in the plane
contains two disjoint empty convex quadrangles.

The proof of Theorem 1 will be done by induction on n. We know that the assertion is
true for n ≤ 9. Let n ≥ 10 and consider a set � of n points in general position. It is
obvious that there exists a line which cuts � into two disjoint sets �1 and �2 of 9 and
n − 9 points, respectively. Then, by the induction hypothesis, �1 contains two disjoint
empty convex quadrangles and �2 contains [2(n − 9)/9] = [2n/9] − 2 disjoint empty
convex quadrangles. Thus � contains [2n/9] disjoint empty convex quadrangles.

3 Constructions
It is easy to find a set of eight points in general position in the plane which does not
contain two disjoint empty convex quadrangles. Indeed, if p1, p2, p3, p4 are the vertices
of a square in a counterclockwise order and qi is an interior point of p1p2p3p4 sufficiently
close to the midpoint of pipi+1, 1 ≤ i ≤ 4, then {p1, p2, p3, p4, q1, q2, q3, q4} is just such
a point set.

Next we show that, for each m ≥ 3, there exists a set of n = 4m + 1 points in general
position which does not contain m disjoint empty convex quadrangles.

Let p1, p2, . . . , p2m be the vertices of a regular 2m-gon C in a counterclockwise order
and let qi be an interior point of C sufficiently close to the midpoint of pipi+1, 1 ≤
i ≤ 2m. Furthermore, let r be a point sufficiently close to the centre of C so that
� = {p1, . . . , p2m, q1, . . . , q2m, r} is in general position. Suppose, for contradiction, that
� contains m disjoint empty convex quadrangles Q1,Q2, . . . ,Qm.

Let pi1 and pi2 two vertices of C so that they belong to Qi for some 1 ≤ i ≤ m and the
number l of vertices of C on the shorter arc of C bounded by pi1 and pi2 is as small as
possible. Now, a very simple counting argument shows that l ≤ 4. Thus, without loss of
generality we may assume that i1 = 1 and i2 ∈ {2, 3, 4}. If i2 = 2, then q1 cannot be a
vertex of a quadrangle. If i2 = 3, then p2 cannot be a vertex of a quadrangle. Finally, if
i2 = 4, then p2 or p3 cannot be a vertex of a quadrangle. Next, let pj1 and pj2 be two
vertices of the longer arc of C bounded by pi1 and pi2 so that they belong to Qj for some
1 ≤ j ≤ m and the number l′ of vertices of C on the arc of C bounded by pj1 and pj2
is as small as possible. Again, a very simple counting argument shows that l′ ≤ 4 and,
similarly as before, we can find a point of � different from q1, p2, p3 which cannot be a
vertex of a quadrangle. Thus � necessarily contains two points which are not vertices
of the quadrangles Q1,Q2, . . . ,Q2m, a contradiction.

Note that the above constructions show that the bound in Theorem 1 is tight for n ≤ 21.
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Lágymányosi utca 11
H–1111 Budapest, Hungary


