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Teaching students how to derive test statistics is an important part of an introductory
course in mathematical statistics. Typically the course material includes both the devel-
opment and the performance of likelihood-ratio tests. Thus, students learn the theoretical
foundation for many of the standard tests. But students should also have the opportunity
early on to see that sometimes a problem can lend itself well to the development of a
specialized test statistic, tailor-made to a particular situation. One such development is
given in this paper. Easy to visualize and understand, the derivation of the test statistic
is based on simple geometrical and physical ideas. An example is given. Well received
by students, this material is useful in mathematical-statistics courses.

1 Introduction
In the usual undergraduate course in mathematical statistics, students learn about likeli-
hood ratios and other general methods to derive test statistics. Sometimes, however, it is
possible to obtain a test statistic in another, specialized way that nicely suits a problem.

.

Bei vielen statistischen Problemen reicht es nicht aus, das vorliegende Material durch
eine Häufigkeitsverteilung zu beschreiben. Vielmehr will man wissen, ob die aufge-
tretenen Abweichungen zufälliger Natur sind. Im entsprechenden Prüfverfahren geht
man deshalb von der Annahme aus, dass die bei den Stichproben festgestellten Un-
terschiede zufälliger Natur sind (Nullhypothese) oder nicht (Alternativhypothese). Es
besteht dann die Aufgabe, über Annahme oder Ablehnung der Nullhypothese zu ent-
scheiden. Im vorliegenden Beitrag wird ein elementares Prüfverfahren vorgestellt, das
kleine Stichprobenmengen zulässt, was bei den Standardverfahren zum Teil nicht mög-
lich ist. jk
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One such derivation is presented in this note; the test statistic is developed from simple
geometrical and physical concepts that are familiar to students since their high-school
days. The procedure is easy to visualize and, therefore, easy to understand. The underly-
ing mathematics has the trigonometric flavor of Fourier or harmonic analysis. Intended
for teachers and students of mathematical statistics, this material is a simplified, expos-
itory version of a test proposed by Marrero [2]; only monthly data are considered in
the present paper. The application of the test is illustrated with an example. Students’s
reactions to this material have been very positive.

2 The problem
Biomedical researchers are interested in seasonal variation because of ecological con-
siderations. For, if the incidence of a disease shows seasonal variation, then an environ-
mental factor has to be considered in the etiology of that disease. Statistical tests for
seasonality are valuable tools that can help to clarify the etiology of diseases that are
poorly understood.

In biomedical seasonality studies both the sample size and the amplitude in the data are
often small. When applied to such data, standard statistical procedures do not perform
well. Therefore statisticians have developed specialized tests that perform better. One
such test is discussed in this paper.

Assumed to come from a multinomial distribution with parameters n and p1, . . . , p12,
the data N1, . . . , N12 are monthly frequencies over a year. The problem is to examine
the data for seasonal variation. The null hypothesis is H0: p1 = · · · = p12 = 1/12, and
the alternative hypothesis HA is that H0 is false. Thus, the alternative hypothesis is not
restricted to a particular kind of seasonal variation. Of course, in practice, the researcher
specifies a priori one type of seasonal variation for HA. As shown below, the test can
be adapted to the pattern specified for HA.

3 The derivation of the test statistic
To develop the test statistic, one takes advantage of the natural cyclic order of monthly
data: the months always occur in the same ordering, and January returns after December.
Thus, consider a unit circle centered at the origin of a rectangular coordinate system.
The circle’s circumference is divided into arcs of equal length, and, as explained below,
the number of such arcs is determined by the pattern specified for HA. Each month
is identified with one of the arcs, allowing for the possibility that the same arc may
correspond to more than one month. The data N1, . . . , N12 are considered as point-
masses, and each point-mass is placed on the center of the corresponding arc. It is as if
the monthly data were wrapped around the circle. Thus, one obtains the sample weighted
circle. It is helpful to visualize this circle as if it were suspended from its center. At
the heart of the test there is a simple idea: if H0 is true, then the center of mass of the
weighted circle must be at the origin, and the circle rests at equilibrium. Therefore, the
evidence in favor of HA becomes stronger as the distance between the origin and the
center of mass of the sample weighted circle increases.

More precisely, the sample weighted circle is constructed as follows. The test is adapted
to the variation specified by the alternative hypothesis by means of an index t. Usually
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one chooses t := 1, 2; more about t comes later. For each month, i := 1, . . . , 12,
one defines θi := tπi/6; this is the midpoint, in radians, of the arc from θi − tπ/12
to θi + tπ/12 that corresponds to the ith month. Next, for each i := 1, . . . , 12, the
point-mass Ni is placed on θi , the arc’s midpoint. The value of t determines the cyclic
frequency t/12 and the corresponding period 12/t of this placing of point-masses. If
the population point-masses were used instead, then one obtains the population weighted
circle.

For monthly data, the seasonal variations usually seen in biomedical research are annual
sinusoidal, semiannual sinusoidal, and annual unimodal.

If the pattern specified for HA is annual sinusoidal or annual unimodal, then one chooses
t := 1. This means that the circumference of the weighted circle is divided into twelve
arcs such that π/12 to π/4 (15◦ to 45◦) corresponds to January, π/4 to 5π/12 (45◦ to
75◦) corresponds to February, etc. Then, if HA is true, the center of mass of the weighted
circle will not be at the origin. Moreover, in this case, the circle will tilt in the direction
of the heaviest concentration of mass, and thereby one can infer the time during the
year when the population has maximum frequency. Of course, when HA specifies annual
sinusoidal variation, one would also infer that the population has minimum frequency
six months away from the time of maximum frequency.

If the pattern specified for HA is semiannual sinusoidal, then one chooses t := 2. In this
case the circumference of the weighted circle is divided into six arcs such that π/6 to
π/2 (30◦ to 90◦) corresponds to January and July, π/2 to 5π/6 (90◦ to 150◦) corresponds
to February and August, etc. Under HA, the center of mass of the weighted circle will
be away from the origin, and the circle will slant in the direction of the excess of mass.
This allows one to infer the location of the two peaks and the two troughs during the
year.

In rectangular coordinates, the center of mass of the sample weighted circle is at the
point (X̄, Ȳ), where

X̄ :=
( 12∑

i=1

Ni cos θi

)/( 12∑
i=1

Ni

)
=

1
n

12∑
i=1

Ni cos θi

and

Ȳ :=
( 12∑

i=1

Ni sin θi

)/( 12∑
i=1

Ni

)
=

1
n

12∑
i=1

Ni sin θi.

The random variables X̄ and Ȳ are, respectively, unbiased estimators of τX̄ and τȲ , the
true values that make up the population center of mass.

The squared distance between the center of mass of the sample weighted circle and
its expected value is given by

{
X̄ − E(X̄)

}2 +
{

Ȳ − E(Ȳ)
}2

; the test statistic is a
standardized version of this random variable. Explicitly, the test statistic Tt is defined by

Tt :=

{
X̄ − E(X̄)

}2

var(X̄)
+

{
Ȳ − E(Ȳ)

}2

var(Ȳ)
.
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Under the null hypothesis, the means, variances, and covariance of X̄ and Ȳ are equal
to simple expressions. These results depend upon the following orthogonality properties
of the cosine and sine functions. If t is an integer such that 0 < t < 6, then

12∑
i=1

cos(tπi/6) =
12∑

i=1

sin(tπi/6) =
12∑

i=1

cos(tπi/6) sin(tπi/6) = 0

and
12∑

i=1

cos2(tπi/6) =
12∑

i=1

sin2(tπi/6) = 6.

Thus, if H0 is true and t ∈ {1, . . . , 5}, one can show that E0(X̄) = E0(Ȳ) = 0,
var0(X̄) = var0(Ȳ) = 1/(2n), and cov0(X̄, Ȳ) = 0. Moreover, when H0 is true, it
follows that the expression for the test statistic simplifies to

Tt =
2
n

{( 12∑
i=1

Ni cos
tπi
6

)2

+
( 12∑

i=1

Ni sin
tπi
6

)2}
.

If not already, the geometric meaning of the test statistic becomes transparent in terms of
polar coordinates. Let (R,Θ) be the polar coordinates that correspond to (X̄, Ȳ). Thus,
the random variable R is defined by R := (X̄2 + Ȳ2)

1
2 , and, assuming (X̄, Ȳ) �= (0, 0),

the random variable Θ is defined by

Θ :=




Arctan(Ȳ/X̄), if X̄ > 0,

Arctan(Ȳ/X̄) − π, if X̄ < 0 and Ȳ < 0,

Arctan(Ȳ/X̄) + π, if X̄ < 0 and Ȳ ≥ 0,

−π/2, if X̄ = 0 and Ȳ < 0,

π/2, if X̄ = 0 and Ȳ > 0.

Then, if H0 is true, Tt = 2nR2; that is, Tt is equal to 2n times the squared distance
between the center of mass of the sample weighted circle and the origin. When H0 is
rejected, the value of Θ serves to infer the times during the year when the population
has extreme frequencies; this is illustrated in the example below.

To obtain the null distribution of Tt, one assumes that the probability law of the weighted
averages X̄ and Ȳ can be approximated well by a nonsingular bivariate normal distri-
bution. In this case, in particular, cov0(X̄ , Ȳ) = 0 is equivalent to the independence of
the random variables X̄ and Ȳ . Then the null distribution of Tt is the chi-square with
two degrees of freedom. By referring the value of Tt to the chi-square distribution with
two degrees of freedom, one can compute the p-value associated with an application of
the test. The p-value is the probability of the test statistic taking on a value equal to or
more extreme than the observed value when H0 is true; “more extreme” means a result
in a direction that favors the alternative hypothesis. Thus, the p-value is a numerical
summary of the evidence: the smaller the p-value, the stronger is the sample evidence
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against H0 and in favor of HA. Customarily set at 5%, the significance level defines a
priori the upper bound in the following commonly accepted rule: reject H0 if and only if
the p-value is less than or equal to the significance level. A type I error occurs when one
erroneously rejects H0. Thus, the significance level that one chooses may be viewed as
some sort of insurance against making a type I error during the application of a statistical
test.

The normality assumption on X̄ and Ȳ is a natural one. Roughly, one would think so
because X̄ and Ȳ are weighted averages, and it is widely known that standardized aver-
ages of independent and identically distributed random variables follow approximately
the standard normal distribution. A study by Marrero [2] produced two important con-
clusions about the performance of the test statistic Tt. First, the validity of the said
assumption on X̄ and Ȳ was confirmed; the study showed that under H0 and at the usual
nominal significance levels of 1% and 5%, the type I error rate is correct for sample
sizes as low as fifteen. Second, the study showed that the test statistic Tt performs very
well, outperforming competing tests.

4 Example
Anencephaly is the congenital absence of all or most of the brain. Discussed by Marrero
[2], the data are the number of first-born anencephalics in Birmingham, England, 1940–
1947, pooled into twelve monthly frequencies (Edwards 1961, Table 1, p. 85). The
ordered list of observations is (10, 19, 18, 15, 11, 13, 7, 10, 13, 23, 15, 22).
The alternative hypothesis is annual sinusoidal variation; therefore, one chooses t := 1.
The resulting test-statistic value T1 = 6.64, whose corresponding p-value p = 0.0362.
Therefore, one rejects the null hypothesis of uniformity in favor of the alternative hy-
pothesis.

In polar coordinates, the center of mass of the sample weighted circle is located at
(R,Θ) = (0.137, 12.8◦). Since 12.8◦ ∈ (345◦, 375◦ = 15◦), one concludes that the
population appears to have annual sinusoidal variation, with maximum frequency near
the end of December and minimum frequency six months away.

These conclusions agree with Figure 1, where the data are shown together with the
fitted annual sinusoidal model ni = α0 + α1 cos(πi/6) + β1 sin(πi/6) + ei , whose least-
squares parameter estimates (and respective estimated standard errors) are α̂0 = 14.7
(1.3), α̂1 = 3.9 (1.8), and β̂1 = 0.9 (1.8).

Based on this analysis, one concludes that the development of anencephaly is not defini-
tively determined at conception, and that the subsequent development of this disorder
may be influenced by environmental factors.
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Fig. 1 Monthly frequency of first-born anencephalics in Birmingham, England, 1940–1947: Data and fitted
annual sinusoidal model
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