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1 Introduction
The Jacobi method with the iteration matrix B converges iff the spectral radius satisfies
ρ(B) < 1. For the derivation of error estimates, stronger conditions such as ‖B‖ < 1
are needed, as a rule. This is briefly reviewed in Section 2. If the matrix B is, in
addition, irreducible and satisfies a weak convergence criterion, then an error estimate
in a weighted ∞- resp. 1-norm can be derived containing ρ(|B|) instead of ‖B‖. The
weights are given by the components of the positive eigenvector of |B| resp. of |B|T
pertinent to the positive eigenvalue ρ(|B|). This is described in Section 3. In Section 4,
an example illustrates the obtained result. Sections 2, 3, and 4 could be used for class
room teaching. Further, Section 5 contains some historical remarks with respect to the
presented subject, and Section 6 discusses the role of the Jacobi method and of related
methods in today’s numerical mathematics.

.

Sehr große lineare Gleichungssysteme A x = b lassen sich oft am besten iterativ lösen.
Dazu bringt man A x = b beispielsweise auf die Form x = B x + c und erhält damit
das nach Jacobi benannte Verfahren x(k+1) = B x(k) +c, k = 0, 1, 2, . . ., wobei x(0) ein
Anfangsvektor ist. Die Konvergenz dieses Verfahrens untersucht man mit Normen für
Matrizen und Vektoren. Dabei spielen letztlich Überlegungen wie bei der Konvergenz
der geometrischen Zahlenreihe

∑∞
j=0 qj = (1−q)−1, |q| < 1, eine wesentliche Rolle. In

diesem Beitrag werden in allgemeinverständlicher Form zwei neue Fehlerabschätzun-
gen für das Jacobi-Verfahren hergeleitet. Hierzu werden historische und didaktische
Anmerkungen gemacht, und es werden Verbindungen zur gegenwärtigen numerischen
linearen Algebra hergestellt.
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2 Error estimate for the Jacobi method in an ordinary norm
Let F = R resp. F = C be the field of real resp. complex numbers. Further, let A = (ai k )
be an n × n matrix, and let x and b be n-vectors with elements in F such that

A x = b . (1)

Assume that
aj j �= 0, j = 1, . . . , n , (2)

and define
D = diag(aj j) . (3)

Then, (1) is equivalent to
x = B x + c (4)

with
B = −D−1(A − D)

c = D−1b

}
. (5)

The Jacobi method for the solution of (1) resp. (4) is given by

x(k+1) = B x(k) + c, k = 0, 1, . . . , (6)

where x(0) is any initial vector. According to [27, 8.1.2(8), pp. 156–157], this method is
convergent for each initial vector x(0) iff

B k −→ 0 (k −→ ∞) , (7)

which in turn is equivalent to the condition that the spectral radius ρ(B) satisfies

ρ(B) := max
j=1,...,n

|λ j(B)| < 1 , (8)

where λ j(B), j = 1, . . . , n, are the eigenvalues of B, cf. [30, Theorem 1.4 and Definition
1.4, p. 13].

More precisely, the following theorem holds (see [27] as cited above).

Theorem 1 Let B = (bi j) be any quadratic matrix. If (7) is fulfilled, then and only then
the Jacobi method converges. In this case, the system (4) is uniquely soluble and the
matrix E − B is nonsingular.

As a rule, error estimates require a stronger condition than (8). For this, let ‖ · ‖ be a
vector norm and an associated sup matrix norm. Then, provided that

‖B‖ < 1 , (9)

from [27, p. 158, (21)] it follows that

‖x(k) − z‖ ≤ ‖B‖
1 − ‖B‖ ‖x(k−1) − x(k)‖ ≤ ‖B‖k

1 − ‖B‖ ‖x(0) − x(1)‖ , (10)

k = 1, 2, . . ., where x = z is the unique solution of (1).
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Remark The condition B k → 0 (k → ∞) is much more elementary than the condition
ρ(B) < 1 since the latter requires the knowledge of the eigenvalue theory. So, the first
one can be used in an early stage of teaching, whereas the second one might be used for
the teaching of advanced students. In this paper, we shall be interested in the condition
ρ(B) < 1.

Remark The condition B k → 0 (k → ∞) is closely related to the convergence of the
Neumann series

∑∞
j=0 B j . In fact, according to [27, p. 170, (7)], it is equivalent to the

existence of (E − B)−1 and the representation
∞∑
j=0

B j = (E − B)−1 . (11)

In this context, another form of the spectral radius is important, namely

ρ(B) = lim
k→∞

‖B k‖ 1
k , (12)

where ‖ · ‖ is any matrix norm, cf. [30, p. 95], [29, p. 262], or [15, p. 78]. So,
limk→∞ ‖B k‖ 1

k < 1 is the root test for the convergence of the series
∑∞

k=0 ‖B k‖,
which in turn is a majorant to ‖

∑∞
k=0 B k‖ and which has the geometric series

∑∞
k=0 qk

with q = ‖B‖ as a majorant.
Now, there are cases where ‖B‖ = 1, but where ρ(|B|) < 1 (cf. Section 4). Here, we
have ρ(B) ≤ ρ(|B|) < 1, which follows from (12) for ‖ · ‖ = ‖ · ‖∞. So, the Jacobi
method is convergent, but the estimate (10) is nevertheless not applicable.
Under additional conditions, it is possible to evade this problem by introducing a
weighted norm.

3 Error estimate for the Jacobi method in a weighted ∞- resp. 1-norm
(i) The main idea
Instead of the usual estimate

|(B x)i| =

∣∣∣∣∣∣
n∑

j=1

bi j x j

∣∣∣∣∣∣ ≤
n∑

j=1

|bi j | max
j=1,...,n

|xj |, i = 1, . . . , n , (13)

one adds the factor 1 = µ j/µ j , j = 1, . . . , n, where µ j > 0, j = 1, . . . , n, and obtains
thus

|(B x)i| =

∣∣∣∣∣∣
n∑

j=1

bi j µ j
1
µ j

x j

∣∣∣∣∣∣ ≤

 n∑

j=1

|bi j |µ j


 (

max
j=1,...,n

µ−1
j |xj |

)
, i = 1, . . . , n ; (14)

further, one multiplies this result by µ−1
i ,

µ−1
i |(B x)i| ≤


 n∑

j=1

µ−1
i |bi j |µ j


 (

max
j=1,...,n

µ−1
j |xj |

)
, i = 1, . . . , n , (15)

in order that both sides of the estimate can be expressed by a weighted norm, see (ii).
Then, for µ j the components κ j of the eigenvector corresponding to ρ(|B|) are chosen,
see (iii).
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(ii) General weighted ∞- resp. 1-norm
Let µ := [µ1, . . . , µn]T ∈ R

n be such that

µ > 0 . (16)

Define
‖x‖∞,µ−1 := max

i=1,...,n
|xi|µ−1

i , x = [x1, . . . , xn]T ∈ F
n, (17)

as well as

‖x‖1,µ :=
n∑

i=1

|xi|µi, x ∈ F
n . (18)

This leads to

‖B‖∞,µ−1 := max
0 �=x∈Fn

‖B x‖∞,µ−1

‖x‖∞,µ−1
= max

i=1,...,n

n∑
j=1

µ−1
i |bi j |µ j (19)

and

‖B‖1,µ := max
0 �=x∈Fn

‖B x‖1,µ

‖x‖1,µ
= max

j=1,...,n

n∑
i=1

µi |bi j |µ−1
j . (20)

We mention that (Fn, ‖ · ‖∞,µ−1) and (Fn, ‖ · ‖1,µ) are dual spaces (see [9], [12], or [29]).

(iii) First additional condition: irreducibility of the matrix B
In the sequel, we need the following

Definition 2 For n ≥ 2, an n× n matrix with elements of F is called reducible if there
exists an n × n permutation matrix P such that

P A PT =
[

A1,1 A1,2

O A2,2

]
, (21)

where A1,1 is an r × r submatrix and A2,2 is an (n − r) × (n − r) submatrix, where
1 ≤ r < n. If no such permutation matrix exists, then A is called irreducible. If A is a
1×1 matrix, then A is irreducible if its single entry is nonzero, and reducible otherwise.

This definition can be found in [30, p. 18]. The meaning of a reducible matrix is illustrated
in [30, p. 19]. It is mentioned that a permutation matrix is a square matrix which in each
row and each column has exactly one entry 1, all others are 0. One can describe an
irreducible matrix by the term of directed graph G(A) of the matrix A, see [30, pp. 19–
20, especially Definition 1.6 and Theorem 1.6], which is often quite useful.

After this preparation, as the first additional condition, suppose that

B is irreducible. (22)

Then, the matrix
|B| := (|bi k |) (23)

is also irreducible (cf. [32, Proposition 1.12]), and |B| ≥ 0. Now, we make use of the
following Perron-Frobenius theorem, cf. [30, Theorem 2.1, p. 30].
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Theorem 3 Let C ≥ 0 be an irreducible n × n matrix. Then,

1. C has a positive real eigenvalue equal to its spectral radius.

2. To ρ(C) there corresponds an eigenvector w > 0.

3. ρ(C) increases when any entry of C increases.

4. ρ(C) is a simple eigenvalue of C.

We apply this theorem to C := |B|. Consequently, the spectral radius ρ(|B|) is a simple
(positive) eigenvalue of |B|, and the associated eigenvector κ can be chosen such that
κ > 0, that is

|B|κ = ρ(|B|)κ, κ > 0 . (24)

From (24) and (19), because of ‖B‖∞,µ−1 = ‖ |B| ‖∞,µ−1 one infers

‖B‖∞,κ−1 = ρ(|B|) . (25)

Further, from (22) it follows that BT is irreducible (cf. [32, Proposition 1.12 or 1.13]).
Thus, similarly as before, the spectral radius ρ(|B|T) is a simple (positive) eigenvalue
of |B|T , and the associated eigenvector χ can be chosen such that χ > 0, that is,

|B|T χ = ρ(|B|T)χ, χ > 0 . (26)

From (26) and (19), we obtain

‖BT‖∞,χ−1 = ρ(|B|T) ; (27)

taking into account ‖BT‖∞,χ−1 = ‖B‖1,χ and ρ(|B|T) = ρ(|B|), we get

‖B‖1,χ = ρ(|B|) . (28)

(iv) Second additional condition: weak convergence criteria
As our second additional condition, suppose that the matrix B satisfies the weak row
sum criterion

n∑
j=1

|bi j | ≤ 1, i = 1, . . . , n ,

n∑
j=1

|bi0 j | < 1, for at least one i0 ∈ {1, . . . , n} ,




(29)

or the weak column sum criterion

n∑
i=1

|bi j | ≤ 1, j = 1, . . . , n ,

n∑
i=1

|bi j0 | < 1, for at least one j0 ∈ {1, . . . , n} .




(30)
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Remark The strong row sum criterion is given by
n∑

j=1

|bi j | < 1, i = 1, . . . , n ,

or equivalently by
‖B‖∞ < 1 ,

and the strong column sum criterion is given by
n∑

i=1

|bi j | < 1, j = 1, . . . , n ,

or equivalently by
‖B‖1 < 1 .

Further, the following somewhat more general criterion due to Sassenfeld [23] is used
in [27, p. 161, Formula (14)]:

q1 =
n∑

j=1

|b1 j |, qi =
i−1∑
j=1

|bi j | qj +
n∑

j=i

|bi j |, j = 2, . . . , n; q = max
i=1,...,n

qi < 1 .

(v) Estimate in a weighted ∞- resp. 1-norm
Under the conditions (22), (29) or (22), (30), according to [30, p. 75] or [27, pp. 161–163]
along with Formula (12), we obtain

ρ(B) ≤ ρ(|B|) < 1 . (31)

Therefore, we have the following result:

Theorem 4 Let B be irreducible. Further, let the weak row sum resp. the column sum
criterion for B be satisfied. Then,

‖x(k) − z‖∞,κ−1 ≤ ρ(|B|)
1 − ρ(|B|) ‖x(k−1) − x(k)‖∞,κ−1 ≤ ρ(|B|)k

1 − ρ(|B|) ‖x(0) − x(1)‖∞,κ−1 ,

(32)
k = 1, 2, . . ., resp.

‖x(k) − z‖1,χ ≤ ρ(|B|)
1 − ρ(|B|) ‖x(k−1) − x(k)‖1,χ ≤ ρ(|B|)k

1 − ρ(|B|) ‖x(0) − x(1)‖1,χ, (33)

k = 1, 2, . . .

Special Case 1: B ≥ 0.
For positive matrices B, ρ(|B|) is replaced by ρ(B).

Special Case 2: B ≥ 0 and B = BT .
For symmetric positive matrices B, we have additionally κ = χ.

Remark Often, one has only an approximation σ > 0 resp. τ > 0 for κ > 0 resp.
χ > 0. If ‖B‖∞,σ−1 < 1 resp. ‖B‖1,τ < 1, then one has at least estimates of the form
(10) in the weighted norm ‖ · ‖∞,σ−1 resp. ‖ · ‖1,τ .
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4 Example

Let the n × n matrix A be given by

A = tridiag [−1 2 − 1] =




2 −1
−1 2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1
−1 2




. (34)

Then,

B =
1
2

tridiag [1 0 1] =
1
2




0 1
1 0 1

1 0 1
. . .

. . .
. . .

1 0 1
1 0




. (35)

So, here B ≥ 0 and B = BT . Evidently, for n ≥ 3 we have ‖B‖∞ = ‖B‖1 = 1 so that
(10) is not applicable for the norm ‖ · ‖∞ resp. ‖ · ‖1. Now, according to [34, p. 230ff]

ρ(B) = ρ(|B|) = cos
π

n + 1
< 1 (36)

and

κ = χ =
[

sin
π

n + 1
, sin 2

π

n + 1
, . . . , sin n

π

n + 1

]T

. (37)

Therefore, the estimates (32) and (33) hold with (36) and (37).

The matrix A in (34) often appears in the finite element approximation of simple one-
dimensional boundary value problems, cf. [21, p. 110] or in finite difference approxima-
tions, cf. [26, p. 55] and [32, p. 117]. Also, similar matrices occur in applications, see
[32, pp. 122–123].

The matrix B is symmetric. One can construct nonsymmetric matrices B with ‖B‖∞ =
‖B‖1 = 1 and ρ(|B|) < 1 by using the results of [26, pp. 154–156], whereby also (36)
and (37) can be obtained as special cases. The information of [26, pp. 154–156] is not
contained in the earlier editions of the book [26].

Remark In practice, more complicated systems of linear equations occur, see Section
6. To solve these equations is a hard problem. It should be said that the problem to
determine the associated quantities ρ(|B|) and κ > 0 is even harder.
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5 Historical remarks
5.1 The Jacobi method
(i) The Jacobi method is introduced in [10, p. 297] in 1845. If one uses the matrix
notation, which was not yet known at that time, however, the original version of Jacobi’s
method is equivalent to

x(0) := D−1 b =: c

∆(1) := B x(0)

∆(2) := B ∆(1)

∆(3) := B ∆(2)

...




(38)

and
x = x(0) + ∆(1) + ∆(2) + ∆(3) + · · · . (39)

There was no convergence proof of (39) in [10]. Nowadays, we see at once that, by
inserting (38) into (39), one obtains the Neumann series and thus convergence if, for
example, the strong row sum or column sum criterion is fulfilled since then

x = (E + B + B2 + B3 + · · ·) c = (E − B)−1 c , (40)

see [27, p. 170]. We remark that according to [33, p. 1] the matrix notation was introduced
by Sylvester [28] in 1850 (see [28, p. 369]) and that according to [33, p. 2] the first
matrix calculations were made by Cayley [2] in 1858.

(ii) In [10], Jacobi applied his method to normal equations (see [27, p. 138]) which
result from the least square method for the solution of an overdetermined system of
linear equations stemming from a problem of celestial mechanics. Jacobi determines the
initial vector x(0) by neglecting the off-diagonal coefficients of the matrix. For strictly
diagonally dominant matrices, this is of course a good approximation to the solution.
Today, we know that the Jacobi method is convergent even for any x(0) if, e.g., ‖B‖ < 1.
This follows directly from Banach’s fixed point theorem (see also Section 5.5).

(iii) Before starting his iterative procedure (38), (39), Jacobi makes it sufficiently strictly
diagonally dominant. For this, he uses a method which can nowadays be described by a
finite number of similarity transformations constructed by so-called elementary rotations
and which is used in [27, p. 212ff] to compute the eigenvalues of a symmetric matrix.
Jacobi himself applies this method also for the calculation of eigenvalues in [11]. We
would like to remark that in modern iterative methods one uses preparatory techniques
before starting the iteration itself, too (see Section 6).

(iv) For convergence considerations, originally strong convergence criteria such as
‖B‖∞ < 1 and ‖B‖1 < 1 were applied, cf. [10] and [27, p. 159]. Weak convergence
criteria became necessary in the context of systems of linear equations arising in the
approximation of boundary value problems, cf. [3, p. 159ff]. We mention that, in [3],
a review of the Jacobi and Gauss-Seidel methods (called there Einschrittverfahren and
Gesamtschrittverfahren) is given, till 1950.
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(v) We remark that Jacobi’s original work [10] is referenced, e.g., in [6] and [30], and
his work [11] in [25].

5.2 The notation of irreducible matrix
The term irreducible (unzerlegbar) was introduced by Frobenius (1912) in [5], and it is
also used by Wielandt (1950) in [31]. Collatz (1950) uses in [3] the term nichtzerfallend.

5.3 The Perron-Frobenius theorem
The original work leading to this theorem can be found in Perron [20] (1907) and
Frobenius [5] (1912). In [20], also a method for the numerical computation of the spectral
radius of a positive matrix is given resembling that of Graeffe. For this, see [4, p. 387].
For a recent paper in this journal on matrices with strictly dominant eigenvalue, see [17].

5.4 Eigenvalue and eigenvector of the example in Section 4
These stem from Lagrange (1759), see [8, pp. 27–29].

5.5 The Banach fixed point theorem (contraction-mapping theorem)
The estimate (10) can be derived by using the Banach fixed point theorem. The original
can be found in [1, p. 160, Théorème 6]. However, the author has not found in [1]
the error estimate (10) itself. Its derivation relies, by the way, heavily on the formula∑∞

j=0 qj = 1
1−q , |q| < 1, for the geometric series. In the Anglo-Saxon literature, Banach’s

fixed point theorem is usually called contraction-mapping theorem. For this, see [19,
p. 129]. In [19], also Banach’s original work is referenced.

5.6 Neumann series
According to [22, p. 146], the convergence of the so-called Neumann series was first
proved by Carl Neumann in [18] (1877). As far as the author sees, however, the Neumann
series (11) itself is not used in [18], but Carl Neumann uses in [18, p. 200] the geometric
series as a majorant to prove the convergence of other series. Carl Neumann must not
be confused with the famous mathematician J. von Neumann, who is referenced, e.g., in
[12, p. 572].

6 The Jacobi method in contemporary numerical mathematics
Iterative methods such as the Jacobi method play an important role in the solution of
large systems of linear equations when direct methods such as the Gaussian elimination
are no longer used due to, for example, rounding errors or because they take too much
time, see [7]. Other standard iterative methods are the Gauss-Seidel method as well as
under- and overrelaxation methods, cf. [30, p. 58ff].

Especially, iterative methods are used to solve large systems of linear equations arising
in the finite element method, cf. [24, p. 148ff]. Before the iterative method starts, the
conditioning of the system is improved by methods such as scaling or preconditioning,
cf. [24, p. 233ff]. A similar idea had already been applied by Jacobi in his pioneering
work [10], as mentioned in Section 5.1.

As to the Jacobi method in contemporary mathematics, a version called damped Jacobi
iteration plays an important role in the multi-grid methods for the solution of problems
in fluid dynamics, cf. [6, p. 19].
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To conclude this section, we want to add some remarks.

The result in Theorem 4 can be generalized to Banach spaces with a cone; for this,
see [14, Section 1 and Section 4] or look for the notion of u-norm in [15]. Hereby, the
corresponding results for integral equations in [13] follow. We leave the details to the
interested reader. Further, we note that, according to [16, Chapter I, 1.4], for a given
norm ‖ · ‖ there exists an equivalent norm ‖ · ‖∗ such that ρ(B) ≤ ‖B‖∗ ≤ ρ(B)+ ε, and
a corresponding error estimate can be found (see [16, p. 19]). But, this norm is mainly
of theoretical interest. Here, we have constructed a norm by using intrinsic properties
of a matrix B, namely the eigenvector of |B| associated with the eigenvalue ρ(|B|). We
mention that, in general, the spectral radius of |B| cannot be replaced by the spectral
radius of B because, in general, ρ(B) is no eigenvalue of B and the pertinent eigenvector
is not positive.
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