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1 Introduction
The Fundamental Theorem of Algebra claims that every polynomial p(z) ∈ C[z] can be
decomposed as a product of linear factors, p(z) = c

∏n
i=1(z − αi). Now, if we assume

that p(z) is a monic polynomial, then c = 1 and

p(z) = zn − a1(α1, . . . , αn)zn−1 + a2(α1, . . . , αn)zn−2 + · · · + (−1)nan(α1, . . . , αn),

.

Allen Lesern wird der Fundamentalsatz der Algebra bekannt sein. Er besagt, dass
jedes Polynom P = P(z) über dem Körper der komplexen Zahlen mindestens eine
komplexe Nullstelle hat. Besitzt P den Grad n, so ergibt sich daraus sofort, dass P
(mit Vielfachheiten gezählt) genau n komplexe Nullstellen hat. Die Bestimmung der
Nullstellen von Polynomen spielte in der Entwicklung der Algebra eine wichtige Rolle.
Allerdings gelang es erst N.H. Abel zu beweisen, dass die Nullstellen eines Polynoms
vom Grad n > 4 in der Regel nicht durch Radikale darstellbar sind. Damit musste zum
Beweis des Fundamentalsatzes nach neuen Ideen gesucht werden. Neben den Beweisen
von C.F. Gauss wird der Fundamentalsatz heute sehr oft als elegante Anwendung aus
dem Satz von Liouville in der Funktionentheorie gefolgert. Im vorliegenden Beitrag
geben die Autoren einen ebenfalls eleganten Beweis des Fundamentalsatzes, der auf
einfachen Ergebnissen der Topologie beruht.
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where
ak (α1, . . . , αn) =

∑
1≤i1<i2<···<i k≤n

αi1αi2 . . . αi k

are the elementary symmetric functions. Hence the next result holds:

Theorem 1 The following claims are equivalent:

(A) The Fundamental Theorem of Algebra

(B) The map σn : Cn → Cn given by

σn(α1, . . . , αn) = (a1(α1, . . . , αn), a2(α1, . . . , αn), . . . , an(α1, . . . , αn))

is onto for all n ∈ N.

Proof. Let a = (a1, . . . , an) ∈ C
n be arbitrarily chosen and set

pa(z) := zn +
n∑

k=1

(−1)k ak zn−k .

It follows from the Fundamental Theorem of Algebra that pa(z) =
∏n

i=1(z − αi0) for a
certain choice of complex numbers {αi0}n

i=1 ⊂ C. Hence a = σn(α10, . . . , αn0) and (A)
implies (B). On the other hand, let p(z) = zn +

∑n
k=1(−1)k ak zn−k be arbitrarily chosen.

Then there exists a certain point α = (α10, . . . , αn0) ∈ C
n such that (a1, . . . , an) = σn(α).

This implies the identity p(z) =
∏n

i=1(z − αi0), which proves (A). �

The main goal of this note is to give an elementary proof of (B) of the theorem above.

For the proof we will need to use Brouwer’s Theorem of Invariance of Domain (see [2,
Theorem 36.5, p. 207]) and a certain separation property of R

n :

Theorem 2 (Brouwer) Let us assume that f : Ω ⊂ R
n → R

n is a continuous injective
map, and Ω is an open subset of R

n. Then f(Ω) is an open subset of R
n.

Theorem 3 Let M ⊂ R
n be an embedded submanifold of R

n of dimension ≤ n − 2,
and let ∆ be a subset of M. Then ∆ ⊂ R

n does not separate R
n (we say that the set

∆ ⊂ R
n separates R

n if R
n \ ∆ is not arcwise connected).

Proof. Recall that the k -manifold M ⊂ Rn is embedded in Rn if and only if for each
x ∈ M there exists a bounded neighborhood Ux of x in R

n and a homeomorphism
ϕx : Cn → Ux such that ϕx(0n) = x and M ∩ Ux = ϕx(Ck

n), where Cn = [−1, 1]n, 0n

denotes the origin of coordinates of R
n and Ck

n = [−1, 1]k ×{0n−k}. If k ≤ n− 2 then
Cn \ Ck

n is arcwise connected, so that

ϕx(Cn \ Ck
n) = Ux \ (M ∩ Ux)

is arcwise connected. It follows from the fact that R
n has a numerable dense subset that

there exists a sequence {xn}∞n=1 ⊂ M such that

(Uxn \ (M ∩ Uxn)) ∩ (Uxn+1 \ (M ∩ Uxn+1)) �= ∅
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for all n, and M ⊂
⋃∞

n=1 Uxn . Hence

T(M) =
∞⋃

n=1

(Uxn \ (M ∩ Uxn))

is arcwise connected.
We may assume without loss of generality that ∆ = M, since if M does not separate R

n

then ∆ cannot separate R
n. Let a, b ∈ R

n\M be arbitrarily chosen and let α : [0, 1] → R
n

be a path with end points {a, b}. If α([0, 1]) ∩ M �= ∅ then we will find another path
β : [0, 1] → Rn with β([0, 1]) ∩ M = ∅. With this idea in mind, let us consider the
intersection

α([0, 1]) ∩ T(M) .

It follows from compactness of α([0, 1]) that there exists t0, t1 ∈ (0, 1), t0 < t1 such
that α(t) /∈ T(M) for all t ∈ [0, 1] \ [t0, t1] and α(ti) ∈ T(M) for i = 0, 1. On the other
hand, there exists a path η : [t0, t1] → T(M) such that η(ti) = α(ti), i = 0, 1 (since
T(M) is arcwise connected). It follows that

β(t) =
{

η(t) if t ∈ [t0, t1],
α(t) otherwise

is a path β : [0, 1] → R
n with β([0, 1]) ∩ M = ∅ and end points {a, b}. �

We believe that there are several advantages of our focus with respect to other proofs of
the Fundamental Theorem of Algebra based in algebraic topology: Firstly, the starting
point is very clear and no trick is used (you know what you must do from the very
beginning) and, as a consequence, the proof is very intuitive. On the other hand, this
proof needs the same background than others which are based on the knowledge of the
homology of spheres. There are also analytical proofs of the Fundamental Theorem of
Algebra (e.g., the one based on Rouché’s theorem) which only require some topological
background.

2 Proof of the main result
In order to prove that σn is onto, we need firstly to state several technical results:

Lemma 4 Let us assume that σn(A) is a bounded subset of C
n. Then A is a bounded

subset of C
n.

Proof. Let us assume that supα∈A ‖σn(α)‖∞ := supα∈A maxk≤n |ak (α)| ≤ C, and let
α ∈ A be arbitrarily chosen. Then∣∣∣∣∣αn

k +
n∑

i=1

(−1)iai(α)αn−i
k

∣∣∣∣∣ = 0 for all k ≤ n . Hence |αk |n ≤
n∑

i=1

|ai(α)||αk |n−i.

If |αk | ≤ 1 we do nothing. Otherwise

|αk | ≤
n∑

i=1

|ai(α)||αk |1−i ≤
n∑

i=1

|ai(α)| ≤ nC. Hence sup
α∈A

max
k≤n

|αk | ≤ max{nC, 1}.

This ends the proof. �
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Corollary 5 The map σn is closed (i.e, it sends closed sets to closed sets).

Proof. Let us assume that y belongs to the closure of σn(M) and M is a closed subset
of Cn. Then there exists a sequence of points {xn} ⊂ M such that σn(xn) → y. Hence
σn({xn}∞n=1) is a bounded subset of Cn and it follows from Theorem 2 that {xn} ⊂ Cn

is bounded. Hence there exists a convergent subsequence {xnk} → x ∈ M (since M is
closed) and

σn(x) = lim
k→∞

σn(xnk ) = lim
n→∞

σn(xn) = y.

This proves that y ∈ σn(M). �

Lemma 6 Let us assume that αi �= α j for all i �= j. Then there exists an open set

U =
◦
U ⊂ C

n such that σn
|U is one-to-one and (α1, . . . , αn) ∈ U.

Proof. It is easy to prove that under these hypotheses, there exists a neighborhood of
α = (α1, . . . , αn) such that

(β1, . . . , βn) ∈ U ⇒ (βθ(1), . . . , βθ(n)) /∈ U for all θ ∈ Σn \ {id}.

Now, assume that σn(β1, . . . , βn) = σn(β∗
1 , . . . , β∗

n ) and (β1, . . . , βn) �= (β∗
1 , . . . , β∗

n )
belong both to U. Then p(z) :=

∏n
i=1(z − βi) =

∏n
i=1(z − β∗

i ) is a polynomial of
degree n which vanishes on the set {βi}n

i=1 ∪ {β∗
i }n

i=1. This implies that (β∗
1 , . . . , β∗

n ) =
(βθ(1), . . . , βθ(n)) for a certain θ ∈ Σn \ {id}, because of the divisibility properties of
polynomials (which are proved as a consequence of the division algorithm of Euclid), a
contradiction. �

Corollary 7 Let us assume that αi �= α j for all i �= j and i, j ∈ {1, . . . , n}. Then there

exists an open set U =
◦
U ⊂ Cn such that (α1, . . . , αn) ∈ U, σn(U) is an open subset

of C
n, and σn

|U : U → σn(U) is a homeomorphism.

Proof. If we take U as in the lemma above, then σn
|U : U → σn(U) is continuous, closed

and bijective. This obviously implies that it is also open, hence it is a homeomorphism.
Furthermore, the Theorem of Invariance of Domain claims that σn(U) is an open subset
of Cn. �

Lemma 8 Let Hi, j = {(z1, z2, . . . , zn) ∈ Cn : zi − zj = 0}. Then

Γ : = σn(Hi, j) = σn

(⋃
t<s

Ht,s

)

for all 1 ≤ i < j ≤ n.

Proof. Let 1 ≤ t < s ≤ n and α ∈ Ht,s be arbitrarily chosen. Let θ ∈ Σn be such that
θ(t) = i and θ(s) = j. Then

σn(α) = σn(α1, . . . , αn) = σn(αθ(1), . . . , αθ(n)) ∈ σn(Hi, j).

This means that σn (Ht,s) ⊂ σn(Hi, j) for all t < s. Hence σn
(⋃

t<s Ht,s
)
⊂ σn(Hi, j),

and the proof follows. �
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Lemma 9 C
n \
⋃

t<s Ht,s and C
n \ Γ are both open connected sets. Furthermore,

σn

(
C

n \
⋃
t<s

Ht,s

)
⊆ C

n \ Γ. (1)

Proof. It is clear that both sets are open, since
⋃

t<s Ht,s is closed, Γ = σn
(⋃

t<s Ht,s
)

and σn is a closed map. If we write the equations which define Ht,s as a linear subspace
of R

2n ≡ C
n (where we identify zi = xi + iyi with the pair (xi, yi)), we have that

Ht,s = ker L(t,s), where

L(t,s)(x1, y1, x2, y2, . . . , xn, yn) = (xt − xs, yt − ys).

Hence dim Ht,s = 2n − 2 for all t < s, and this implies that
⋃

t<s Ht,s does not separate
R2n. Hence Cn \

⋃
t<s Ht,s is a connected set.

On the other hand, it follows from the identities Γ = σn(H1,2) and

(z + α)2(zn−2 + b1zn−3 + · · · + bn−2)

= zn + (b1 + 2α)zn−1 + (b2 + 2αb1 + α2)zn−2

+
n−2∑
k=3

(bk + 2αbk−1 + α2bk−2)zn−k + 2αbn−2z + α2bn−2,

that Γ is a subset of M = {A(α) · b : α ∈ C, b = (b1, . . . , bn−2) ∈ C
n−2}, where

A(α) =




−1 0 0 · · · 0 0

2α 1 0
...

...
−α2 −2α −1 · · ·

0 α2 2α · · ·
0 0 −α2 · · · (−1)n−3 0
0 0 0 2(−1)n−2α (−1)n−2

...
...

... (−1)n−1α2 2(−1)n−1α
0 0 0 · · · 0 (−1)nα2




∈ Mn×(n−2)(C)

for all α ∈ C. Now, rank(A(α)) = n− 2 (as a complex matrix) for all α ∈ C. Hence M
is a ruled submanifold of C

n ≡ R
2n of complex dimension equal to n− 1, so that it has

real dimension 2n− 2. Hence R2n \∆ is arcwise connected for all ∆ ⊆ M. This means
that C

n \ Γ is arcwise connected.

Now, we prove the inclusion formula (1). Let us assume that σn(α) ∈ Γ. Then there exists
a certain β ∈ H1,2 such that σn(α) = σn(β). But this implies that α = (βθ(1), . . . , βθ(n))
for a certain θ ∈ Σn (as in the proof of Lemma 4). Hence α ∈

⋃
t<s Ht,s. This ends the

proof. �

Now we are able to prove the main result of this paper:
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Theorem 10 The map σn : C
n → C

n is onto for all n ∈ N.

Proof. It is clear that

σn(Cn) = σn

(
C

n \
⋃
t<s

Ht,s

)
∪ Γ.

Hence we only need to prove that σn(Cn \
⋃

t<s Ht,s) = C
n \ Γ. Now, it follows from

Corollary 5 and 7 that σn(Cn \
⋃

t<s Ht,s) is a connected open subset of Cn \ Γ. On the
other hand, if y ∈ Cn\Γ is a point of the closure of σn(Cn\

⋃
t<s Ht,s) in Cn\Γ, then (as

it was proved in Corollary 5), there exists a convergent sequence {xnk } ⊂ C
n\
⋃

t<s Ht,s,

such that {xnk} → x ∈ Cn \
⋃

t<s Ht,s,

σn(x) = lim
k→∞

σn(xnk ) = y.

But y /∈ Γ implies that x ∈ Cn \
⋃

t<s Ht,s. Hence σn(Cn \
⋃

t<s Ht,s) is a closed subset of
Cn \Γ. Now we use that Cn \Γ is connected to obtain that σn(Cn \

⋃
t<s Ht,s) = Cn \Γ,

which is what we wish to prove. �

Remark 11 The proof uses that we are dealing with complex polynomials since oth-
erwise the sets Hi, j would be hyperspaces in R

n, so that R
n \
⋃

t<s Ht,s could not be a
connected set.

Remark 12 With the use of a little of complex analysis there are several more elementary
proofs of the Fundamental Theorem of Algebra (see [1], [3]). The standard focus is to use
Liouville’s theorem. Another point of view (that usually does not appear in textbooks),
very near to our proof, is as follows: first prove the open mapping theorem (i.e., that
non-constant holomorphic functions are open maps), then prove by similar arguments to
those given in Lemma 4 and Corollary 5, that p(z) = zn +

∑n
k=1 ak zn−k is a closed map

for all choices of coefficients a1, . . . , an ∈ C. Finally, you use that C is connected.
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