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1 The discovery of Ceres
The discovery of Ceres, the first of the asteroids between Mars and Jupiter, was the great
scientific event at the beginning of the 19th century with important consequences for
the later development of science, despite the fact that this feeble light-point has hardly
been seen ever since by non-specialists, and thus had absolutely no immediate ‘practical’
importance.

1.1 The rule of Titius-Bode

Das Daseyn dieses Planeten scheint insbesondere aus einem merkwürdigen Ver-
hältniss zu folgen . . . Sollte der Urheber der Welt diesen Raum leer gelassen
haben?

(J.E. Bode, Anleitung zur Kenntniss des gestirnten Himmels, 6. Aufl., Berlin 1792,
quoted in Hegels Werke 5, Anmerkungen p. 810)

.

Vor genau 200 Jahren begann Gauss, anlässlich seiner spektakulären Wiederentdeckung
der Ceres, mit der systematischen Benützung seiner Methode der kleinsten Fehlerqua-
drate. Diese Methode ist aus dem heutigen wissenschaftlichen Rechnen nicht mehr
wegzudenken. Dies bietet eine gute Gelegenheit für eine Retrospektive, einschliesslich
Gauss’ Berechnungen und der Querelen mit Hegel und Legendre. Die Arbeit schliesst
mit einigen kleinen heutigen Anwendungsbeispielen, nämlich der Berechnung der Po-
sition der Kamera eines Photos, der „Korrektur“ von Bildern Leonardo da Vincis und
der Vorhersage eines Gletscherabbruchs.
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The astronomer priests of Babylon discovered seven distinguished celestial bodies: first
the Sun and the Moon, then Venus (1600 B.C.), finally Mars, Mercury, Jupiter, and
Saturn. Soon, days were alternatively consecrated to these divinities (Sunday, Monday,
Mardi, Mercredi, Jeudi, Vendredi, Saturday) and since thousands of years all human
activity on the earth pulsates in this 7-days rhythm. All this time, nothing was added
to these Babylonian Gods, until Sir William Herschel, a German organist and amateur
astronomer living in England, discovered the 13th of march 1781 a new planet, through
a huge telescope of his own construction. Herschel wanted to name ‘his’ new planet
Georgium sidus (George’s star), in devotion to the British King, but Bode’s proposition
Uranus (in Greek mythology the father of Saturnus) was felt less patriotic and became
generally accepted.

The discovery of Uranus also revived the discussions about the formula of Johann Daniel
Tietz (Titius) and Johann Elert Bode, which stated that the semi-major axes of the orbits
of the planets were given by the rule

0.4, 0.4 + 0.3 = 0.7, 0.4 + 2 · 0.3 = 1 (the earth), . . . 0.4 + 2n−2 · 0.3, . . . .

This, for n = 2, 3, 4, 6, 7, determines quite precisely the orbits of the known planets,
and still worked rather well, with n = 8, for the orbit of Uranus. However, the number
n = 5 was missing, which suggested that the ‘Creator of this world’ has certainly not
left empty this gap (see citation). To prove or disprove this conjecture became then a
major scientific challenge of the time.

1.2 The thesis of Hegel
Sehen Sie sich doch nur bei den heutigen Philosophen um, bei Schelling, Hegel,
Nees von Esenbeck und Consorten, stehen Ihnen nicht die Haare bei ihren Defi-
nitionen zu Berge?

(Brief von Gauss an Schumacher, 1.11.1844, Werke 12, p. 62)

Also one of the most influential philosophers, Georg Wilhelm Friedrich Hegel, took part
in these discussions and submitted in 1801 his thesis (Dissertatio philosophica de orbitis
planetarum, Ienae MDCCCI, Werke 5, pp. 221–253) at the University of Jena. He starts
by ‘proving’ the laws of Kepler without any need of mathematics or physics, and, in the
last part, turns his attention to Bode’s rule. This latter had of course no philosophical
contents. Now, we have to look up Plato’s Timei and find the magic numbers 1, 2, 3, 4,
9, 8, 27, where we are allowed to replace the 8 by a 16 (!)1). Then we take the third roots
of the fourth powers of these numbers, still replacing without hesitation (‘ponamus’) the
number 1 by 3

√
3, and we obtain the sequence2)

1.4 2.56 4.37 6.34 18.75 40.34 81

in which in fact ‘between the fourth and fifth position is a lot of space3); hence there is
no planet missing in this gap.

1) ‘16 enim pro 8 quem legimus ponere liceat’.

2) Most of these roots are wrong in the last digit.

3) ‘inter quartum et quintum locum magnum esse spatium’
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It was of course bad luck that this conclusion was held up to ridicule precisely the same
year by the discovery of Ceres. Needless to say that all this was not favourable to the
mutual esteem between scientists and philosophers (see quotation).

1.3 The discovery of Piazzi
On January 1, 1801, the Italian astronomer Giuseppe Piazzi discovered in the Taurus
constellation a tiny little spot, and was able to follow its orbit until the 11th of February,
when illness, bad weather, and the approaching Sun interrupted the observations. He
named it Ceres Ferdinandea (Ferdinand is another King’s name). The data of Piazzi’s
observations of Ceres were published in the September issue of the Monatliche Corre-
spondenz (see [19]). We present these values in Table 1.1, where the latitudes βi are
taken southward. The great challenge was now to rediscover this lost body towards the

1801 Longitude Latitude Longitude Latitude

Jan. 1 530 23
′

06.38
′′

30 06
′

45.16
′′

23 530 44
′

12.46
′′

10 38
′

46.78
′′

2 530 19
′

38.18
′′

30 02
′

26.46
′′

28 540 15
′

18.52
′′

10 21
′

04.92
′′

3 530 16
′

37.70
′′

20 58
′

08.04
′′

30 540 30
′

10.52
′′

10 14
′

14.24
′′

4 530 14
′

21.44
′′

20 53
′

51.98
′′

31 540 38
′

05.58
′′

10 10
′

51.02
′′

10 530 07
′

57.64
′′

20 28
′

53.64
′′

Feb. 1 540 46
′

27.14
′′

10 07
′

34.18
′′

13 530 10
′

05.60
′′

20 16
′

46.08
′′

2 540 55
′

01.52
′′

10 04
′

18.10
′′

14 530 11
′

54.20
′′

20 12
′

54.02
′′

5 550 22
′

45.20
′′

00 54
′

34.54
′′

19 530 26
′

01.98
′′

10 53
′

37.82
′′

8 550 53
′

04.52
′′

00 45
′

08.28
′′

21 530 34
′

22.68
′′

10 46
′

13.06
′′

11 560 26
′

28.20
′′

00 35
′

55.02
′′

22 530 39
′

11.58
′′

10 42
′

28.80
′′

Table 1.1 The observations of Piazzi

end of the year, and many astronomers tried to extrapolate as good as possible its orbit
(Burckhardt, Olbers, Piazzi).

But a certain “Dr. Gauss in Braunschweig” computed a totally different solution “nach
einem eigenthümlichen Verfahren” and published it the 29th of September 1801. Not
satisfied with that, with an enormous computational effort, he recomputed and readjusted
the parameters continuously, and finally arrived in December 1801 at the values presented
in Table 1.2 4).

Sonnenferne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3260 53
′

50
′′

Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 810 1
′

44
′′

Neigung der Bahn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 36
′

21
′′

Logarithmus der halben grossen Axe . . . . . . . . . . . . . . . 0.4414902
Excentricität . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.0819603
Epoche: 31 Dec. 1800 mittl. helioc. Länge . . . . . . . . . . 770 54

′
29

′′

Table 1.2 The elements of Ceres (Gauss Dec. 1801)

4) The argument of the perihelion is given by w = Sonnenferne − 1800 − Ω.
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The 7th of December 1801, Freiherr von Zach re-discovered Ceres precisely at the posi-
tion predicted by Gauss. This event “proved him to be the first of theoretical astronomers
no less than the greatest of arithmeticians” 5).

2 The first computations of Gauss

Die von Kreis- und Parabel-Hypothesen unabhängige Bestimmung der Bahn eines
Himmelskörpers aus einer kurzen Reihe von Beobachtungen beruht auf zwei
Forderungen: I. Muss man Mittel haben, die Bahn zu finden, die drei gegebe-
nen vollständigen Beobachtungen Genüge thut. II. Muss man die so gefundene
Bahn so verbessern können, dass die Differenzen der Rechnung von dem ganzen
Vorrath der Beobachtungen so gering als möglich werden.

(Gauss, Summarische Übersicht; see [8], p. 148)

Gewiss, jeder der die Rechnungen kennt, die die Bestimmung der Elemente eines
Planeten und dann jeder daraus herzuleitende Ort erfordert, muss es bewundern,
wie ein einzelner Mann in so kurzen Zeiträumen so vielfache mühsame Rechnun-
gen zu vollenden vermögend war.

(von Zach, März 1805, see Gauss Werke 6, p. 262)

Le ciel est simple is the leitmotiv of the amateur observatory in St. Luc, Switzerland,
and one might agree at least as long one does not try to understand the computations
of Gauss. The great advantage of Gauss’ ideas over his rivals was, that he assumed
solely Kepler’s laws for his planet and no other hypotheses. But Gauss never revealed
details of his calculations. Urged by Olbers, he finally sent in August 1802 a manuscript
Summarische Übersicht without any desire to see it published. This text was finally
printed in 1809 by von Lindenau (see [8]) with all the excuses of the editor for the many
‘imperfections’. An excellent English description of Gauss’ calculations has appeared
recently (see [18]).

All the difficulty stems from the great number of variables involved. Indeed, we have to
work with

Elements of orbit

w arg. of perihelion
Ω long. of ascend. node
i inclination of orbit
a semi-major axis
e eccentricity
l0 mean heliocent. long.

(A)
⇐⇒

Heliocentric
coordinates

 x
y
z


 (B)

⇐⇒

Geocentric
spherical
coordinates

 ρ
λ
β




(2.1)

The quantities measured are the angles λ and β (the distance ρ is unknown, of course)
for several time values, the quantities to be computed are the elements of the orbit. So
we need formulas for the connecting passages (A) and (B).

5) W.W.R. Ball, History of Mathematics, London 1901, p. 458; quoted from R.E. Moritz, Memorabilia
Mathematica, p. 157.
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Fig. 2.1 Kepler orbit; Pe the planet, f focus (the sun), u the true anomaly, v the eccentric anomaly, a semi-major
axis (perihelion), e eccentricity

Passage (A). For a given time t, we have first to find the position of the planet on the
ellipse, i.e., to find the eccentric anomaly u (see Fig. 2.1, left). We first assume the point
t = 0 at the perihelion. Then Kepler’s second law (‘same times, same areas’) tells us
that t is proportional to the area A. The period P of the orbit thereby corresponds to the
total area abπ of the ellipse, so we have

A
abπ

=
t
P

.

We now stretch the ellipse to a circle (Fig. 2.1, right), so that B = a
b A, but also B =

a2

2 (u−e sin u) (difference of the areas of a sector and the triangle T). The three equations
lead to

nt = u− e sin u (Kepler’s equation) (2.2)

where the constant n = 2π
P is called the mean angular rate. We finally transfer the

origin of time to the correct place, i.e., t in (2.2) becomes t − t0, where t0 is the time
of perihelion. Thus we have to add the epoch l0 and to subtract the argument of the
perihelion and the longitude of the ascending node. Then (2.2) becomes

l0 − (w + Ω) + nt = u− e sin u. (2.3)

To solve this transcendental equation for u we need to find the mean angular rate which
is given by Kepler’s third law. This law states that a3 is proportional to P2, i.e., that

n2a3 is a known constant. (2.4)

Having now computed, for a given time t, the eccentric anomaly u, we express, using
u, Ω, w, i, e, a and elementary spherical geometry, the position of the planet in the
heliocentric coordinates (x, y, z) (see for example [4, pp. 182–186] or [3, pp. 84–90] for
more details and explicit formulas).

Passage (B). For this, we have to know the solar geocentric coordinates (X, Y, Z) (for
the same date and time) and we obtain the geocentric ecliptic coordinates of the planet
by adding these and taking spherical coordinates

ξ = x + X = ρ cos β cos λ,

ν = y + Y = ρ cos β sin λ,

ζ = z + Z = ρ sin β.

(2.5)
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Gauss’ procedure. At the time of the discovery of Ceres, it was well-known how
to compute the six elements of the orbit of a planet from two sets of heliocentric
coordinates x, y, z. This consists in solving 2 × 3 nonlinear equations in six unknowns.
The great difficulty was that there were only two geocentric observed values λi , βi per
data point. After long formula manipulations of the above expressions, Gauss was able
to reduce the computation of one set of heliocentric coordinates x, y, z to the knowledge
of two sets of observed values λi , βi via the solution of a complicated transcendental
equation. Therefore, from three sets of observations, he obtained two sets of heliocentric
coordinates and thus the desired elements. These developments, too long to be given
here, are excellently presented in [18]; see also [11].

Thereby, it was advantageous to have the third point exactly in the middle of the two
others. So Gauss started with the data Jan. 2, Jan. 22, and Feb. 11. The obtained values
of the elements were then recomputed repeatedly by changing the dates, and by checking
them for the remaining data. All these results of calculations, and Gauss’ later results
for the subsequent discoveries of Pallas Olbersiana, Juno and Vesta, are impressively
documented in Gauss’ Werke, vol. 6, pp. 199–402.

As a conclusion, we see that these computations were not performed with the method
of least squares.

3 The method of least squares

Der Verfasser gegenwärtiger Abhandlung, welcher im Jahre 1797 diese Auf-
gabe nach den Grundsätzen der Wahrscheinlichkeitsrechnung zuerst untersuchte,
fand bald, dass die Ausmittelung der wahrscheinlichsten Werthe der unbekannten
Grösse unmöglich sei, wenn nicht die Function, die die Wahrscheinlichkeit der
Fehler darstellt, bekannt ist.

(Gauss, Gött. gelehrte Anz. 33 (1821), pp. 321–327)

Things changed, however, after Ceres had been rediscovered in December 1801 and when
more observations became available. Now the task was to improve the orbital elements to
still higher accuracy with the help of all these new data. Here Gauss started to apply the
method of least squares, again without ever revealing details to anybody. The only evi-
dence is the last sentence of the Summarische Übersicht: “hat man schon Beobachtungen
von 1 oder mehrern Jahren . . ., so halte ich den Gebrauch der Differential-Änderung,
wobei man eine beliebige Zahl von Beobachtungen zum Grunde legen kann, für das
beste Mittel” – and the precision of the results (see also [17]).

Legendre contra Gauss. In 1805 appeared the work Nouvelles méthodes pour la de-
termination des orbites des comètes by A.-M. Legendre, containing in an appendix an
extremely beautiful presentation of the méthode des moindres quarrés. The clarity of
this work together with numerical examples made the least squares method immediately
known in all scientific communities. Despite of Legendre’s work, Gauss called, in his
famous treatise [9] Theoria motus corporum celestium, published 1809, obstinately the
least squares idea “my principle, which I have made use of since 1795”. Legendre then
protested in a long letter to Gauss, which is worth reading (Gauss Werke X/1, p. 380;
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complete text in English translation in [15], pp. 242–243; “je n’ai jamais appellé princip-
ium nostrum un principe qu’un autre avait publié avant moi”). Gauss never answered to
Legendre, but mentioned to others the existence of a cryptic entry in his diary from June
17, 1798, simply saying “# Calculus probabilitatis contra La Place defensus” (see facsim-
ile in Fig. 3.1). Legendre never forgot this, also because the young Jacobi (concerning

Fig. 3.1 Entry in Gauss’ diary, June 17, 1798

elliptic functions, see [15], p. 246) and the young Bolyai (non-Euclidean geometry, see
[2], p. 99) made similar experiences with Gauss.

Gauss’ probabilistic justification of the least squares principle. Going much further
than Legendre, Gauss gave an answer to the question: “Why least squares and not, for
example, least fourth powers or least sixth powers?” To explain the idea, we treat a
simple problem, i.e., the approximation of three ‘observations’ xi, yi (i = 1, 2, 3) by an
‘orbit’ which is a straight line

y = a + bx (3.1)

(see Fig. 3.2). If now the three points don’t lie on one line, there are three different lines,

x1

y1
y1

y2
y

β

2
y3

y3

0

1

2

0

1

2

x2 x3 x1

1

β2

β3

x2 x3

Fig. 3.2 Motivation for the least squares method

none of which is satisfactory (see the left picture). Now suppose that there exist values

βi = a + bxi (3.2)

on a certain line, and that the measurements yi are random samplings whose errors satisfy
a certain probability law. The most common distribution is (see the right picture; the
probability is symbolized by varying grey tones)6)

P(0 ≤ βi − yi ≤ ∆y) =
e−

(βi−yi )
2

2σ2

σ
√

2π
∆y.

6) Laplace arrived at this law from the binomial coefficients and a passage n → ∞; for Gauss it was simply
the law which reproduced the well-proved arithmetic mean.
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Now, the probability of obtaining the three values y1, y2, y3 (to a precision of ∆y) is the
product of the three above probabilities, i.e.,

(
∆y

σ
√

2π

)3 3∏
i=1

e−
(βi−yi )

2

2σ2 =
(

∆y
σ
√

2π

)3

e−
∑3

i=1
(βi−yi )

2

2σ2 .

We have then maximum likelihood of our result, when this probability is maximal, i.e.,
when the exponent

3∑
i=1

(
βi − yi

)2 = min !

and with (3.2)
3∑

i=1

(
a + bxi − yi

)2 = min !

which is, precisely, the principium nostrum. Differentiating the last expression with
respect to a and b we obtain

(
Σ 1 Σ xi

Σ xi Σ x2
i

)(
a
b

)
=

(
Σ yi

Σ xiyi

)
or ATAα = ATy, A =


 1 x1

1 x2

1 x3


 . (3.3)

These are called the normal equations. Good luck, that the principium with best proba-
bilistic justification also leads to the easiest possible problem to solve, a linear system
of equations.

Further developments. Of the many important consequences which followed the least
squares idea, we mention the following:

• Gaussian elimination. In order to prove the solvability of the normal equations, Gauss
made in [9] the first clear description of the elimination algorithm for linear equations.

• Gauss-Newton method. In the same paper, Gauss also explained how nonlinear least
squares problems are linearized in the neighbourhood of a first approximate solution,
which is then iteratively refined.

• Laplace’s central limit theorem. In 1809, Laplace published his central limit theorem,
showing that any probability function, after taking arithmetic means, tends to the
normal distribution for n → ∞. Soon after, he extended this to justify the principle
of least squares for arbitrary probability functions and n → ∞. A great publication
of all these results was Théorie analytique des probabilités from 1812.

• In 1823, Gauss publishes a second fundamental treatise on least squares, [10] Theoria
combinationis observationum erronibus minimis obnoxiae in two parts, which con-
tains a new justification of the least squares principle, independent of the probability
function, which is today called the Gauss-Markov theorem.

• In 1828, Gauss publishes a Supplementum, which contains impressive calculations
for the geodesic triangulations of the Netherlands and the country of Hannover.
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• Also in 1828, Bessel discovers, originally for the discrete case, the relation between
the least squares idea, the orthogonality relations, and the Euler-Fourier formulas for
the trigonometric approximation. This discovery, extended by Gram (1883) to the
continuous case, is the basis of the L2 Hilbert space theory of Fourier series.

• In 1845, Jacobi publishes his method for solving the normal equations with the help
of successive rotations in R

2. These rotations lead in the 1950ies to Givens’ method
for triangularization and the first stable eigenvalue algorithm.

• In 1900 appears the classical paper of Karl Pearson [14], which combines the least
squares method with the χ2 distribution and led to the famous χ2-test for the reliability
of hypotheses.

• In 1958 appears Householder’s reflection algorithm, which, by replacing Givens’
rotations, leads to the QR decomposition, and, by Golub (1965), became the nowadays
standard algorithm for least squares problems. All examples which follow, have been
computed with this method, using a code written by E. Hairer for his course ‘Analyse
Numérique’ (http://www.unige.ch/math/folks/hairer/polycop.html).

A complete modern treatment of numerics for the least squares method, which contains
nearly 1000 bibliographical references, is the book of Björck [1]. Of valuable help for
readers interested in Gauss’ contributions is the bilingual edition of Theoria combina-
tionis observationum with Supplementum and Anzeigen, and, most important, a carefully
written Afterword, due to G.W. Stewart [16]. Many original texts translated into English
can also be found in [12], Sect. 4.9 and 4.10.

The orbit of Ceres with the least squares method. In possession of a modern algorithm,
we now want to compute the elements of the orbit of Ceres using the data of Piazzi with
the least squares method. This we did as follows: for given orbital elements w, Ω, i, a, e,
l0, we designed a subroutine, computing with the aid of formulas (2.1) through (2.5), for
the times ti of Piazzi’s observations, the geocentric longitudes λi and latitudes βi . The
necessary expressions for the solar heliocentric coordinates of the earth (X, Y, Z) were
obtained from the server of l’Institut de mécanique céleste et de calcul des éphémérides
(http://www.bdl.fr/ephemeride.html). These values compared to the actual observations
λ̂i , β̂i define a function

F : R
6 −→ R

38

(w,Ω, i, a, e, l0) �→
(
λt1(. . .) − λ̂1, . . . , λt19(. . .) − λ̂19,

βt1(. . .) − β̂1, . . . , βt19(. . .) − β̂19

)
,

(3.4)

and we have to find w, Ω, i, a, e, l0 such that

‖F(x)‖2
2 =

19∑
i=1

(
(λti − λ̂i)2 + (βti − β̂i)2

)
= min ! (3.5)

As initial values we chose values close to Gauss’ values and after 5 Gauss-Newton
iterations the least squares solution was precise to 7 digits (values displayed in Table 3.1).
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Sonnenferne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3180 12
′

27
′′

Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 800 55
′

9
′′

Neigung der Bahn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 35
′

38
′′

Logarithmus der halben grossen Axe . . . . . . . . . . . . . . . 0.4448506
Excentricität . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.0694885
Epoche: 31 Dec. 1800 mittl. helioc. Länge . . . . . . . . . . 750 47

′
31

′′

Table 3.1 The elements of Ceres (least squares)

Latitude

Least Squares

Piazzi

Longitude
53.0

1.0

2.0

3.0

4.0

54.0 55.0 56.0 57.0

t = =1 λ β53.38 3.11
t = =2 λ β53.33 3.04
t = =3 λ β53.28 2.97
t = =4 λ β53.24 2.90
t = =5 λ β53.13 2.48
t = =6 λ β53.17 2.28
t = =7 λ β53.20 2.21
t = =8 λ β53.44 1.89
t = =9 λ β53.57 1.77
t = =10 λ β53.65 1.71
t = =11 λ β53.74 1.65
t = =12 λ β54.26 1.35
t = =13 λ β54.50 1.24
t = =14 λ β54.64 1.18
t = =15 λ β54.77 1.13
t = =16 λ β54.92 1.07
t = =17 λ β55.38 0.91
t = =18 λ β55.89 0.75
t = =19 λ β56.44 0.60

Fig. 3.3 The computed and observed positions of Ceres

In Fig. 3.3 we compare Piazzi’s observations and our computations. These latter com-
putations fit better Piazzi’s observations than Gauss’ values, but Gauss’ elements are
closer to the true orbital elements. The reason is that some of Piazzi’s measurements
contain slight errors (this was already observed by Gauss), and that these errors influence
enormously the solutions (this was also observed by Gauss). This phenomenon is today
called a badly conditioned problem.

4 Some today’s examples

The method of least squares is the automobile of modern statistical analysis;. . .

(The first sentence of Stigler [17])

Nearly everywhere, where data have to be analysed or models adjusted, one applies
today the method of least squares, very often to problems of enormous dimensions. For
particularly impressive examples and an advancement of the theory we refer the reader
to a forthcoming book by Deuflhard [5]. Here, in this paper, we explain in some detail
three nice examples from everyday life.

4.1 The position of a camera

Problem. We have a photograph (see Fig. 4.1), on which we distinguish a couple of
points with measured local coordinates (ûk , v̂k ). Of the same points, we determine the



Elem. Math. 57 (2002) 55

Fig. 4.1 A photograph from the Montblanc region (Photo: G. Wanner)

corresponding space coordinates (xk , yk , zk ) from a map, where the origin for x, y is
placed arbitrarily and z are the altitudes. The task is to find out the position of the camera,
its focus and its angles of inclination. A copy of the map, the Swiss national map 1:50 000
folio 5003, can be found under http://www.unige.ch/math/folks/ hairer/polycop.html. In
Table 4.1 are given the values used in our calculations.

k ûk v̂k xk yk zk

1. Col des Grandes Jorasses −0.0480 0.0290 9855 5680 3825
2. Aiguille du Géant −0.0100 0.0305 8170 5020 4013
3. Aig. Blanche de Peuterey 0.0490 0.0285 2885 730 4107
4. Aiguille du Tacul −0.0190 0.0115 8900 7530 3444
5. Petit Rognon 0.0600 −0.0005 5700 7025 3008
6. Aiguille du Moine 0.0125 −0.0270 8980 11120 3412

Table 4.1 The data for the camera problem (in meters)

For the solution of our problem, we denote by (x̃, ỹ, z̃) the position in space of the
camera’s objective, and by 
a = (a, b, c) the perpendicular vector from the objective to
the projection plane. Finally we allow the camera to be rotated around 
a by an angle θ.
There are thus seven unknowns to determine. Very similar to the calculations of Gauss,
but much easier, we have, once these 7 variables fixed, to find out the relations between
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Fig. 4.2 Perspective representation: today (left) . . . and 500 years ago (Dürer 1525, right)

the coordinates x, y, z in space and the corresponding projection points u, v on the
photograph. For this, we fix two orthogonal vectors in the projection plane


h =
1√

a2 + b2


 b

−a
0


 , 
g =

1√
(a2 + b2)(a2 + b2 + c2)


 −ac

−bc
a2 + b2


 . (4.1)

Then, for a given point (x, y, z) (see Fig. 4.2) we compute a vector 
w by


w = λ ·


 x − x̃

y− ỹ
z − z̃


 (4.2)

where the factor λ is determined by 〈
w −
a,
a〉 = 0. Then α = 〈
w,
h〉 and β = 〈
w,
g〉
are the coordinates of the projection point, which are finally rotated by θ:(

u
v

)
=

(
cos θ − sin θ
sin θ cos θ

)(
α
β

)
. (4.3)

We have then the best solution, when these projected points (uk , vk ), for the data
(xk , yk , zk ), correspond in the best possible way to the measured data points (ûk , v̂k ) of
the photograph, i.e., according to ‘principium nostrum’, if

6∑
k=1

(
(uk − ûk )2 + (vk − v̂k )2

)
= min ! (4.4)

For this problem, the Gauss-Newton algorithm leads, with very rough initial values, after
a couple of iterations, to the solution

x̃ = 9679 , ỹ = 13139 , z̃ = 4131.

The photograph has thus been taken from the summit of the Aiguille Verte, whose
altitude is known to be 4122 meters. The precision of these amateur calculations is not
that of professional Swiss topographers.
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Fig. 4.3 Left: Drawing of Leonardo da Vinci (1510, Codex Atlanticus fol. 707r; Bibliotheca Ambrosiana,
Milano), from [13], p. 100; right: Leonardo’s vertices and, in grey, the ‘corrected’ drawing (Assyrus
Abdullus & Gerhardus Wannerus, linguæ programmatoriæ Fortranus & Postscriptus, Calculatores
SunBlade 100, Universitas Genavæ)

4.2 Leonardo’s polyhedron
We now apply the same algorithm as above to an example from the history of art.
The ‘mountains’ are now the exact vertices of a regular icosidodecahedron somewhere
placed in space, and the ‘photograph’ is a drawing by Leonardo da Vinci (see Fig. 4.3,
left) which was performed for the book De divina proportione by Luca Pacioli, Venice
1509. Pacioli says in his preface that it was done ‘by the divine left hand of my friend
Lionardo of Florence’ (quoted from [6], p. 253). After having placed the ‘camera’ in the
best possible position, we can project the exact vertices back to the picture and thus find
out, nearly 500 years later with the aid of modern computing tools, the actual precision
of Leonardo’s drawing. The measured coordinates of the 20 visible vertices are given in
Table 4.2.

k uk vk

1 5.409 30.691
2 −26.388 6.720
3 −13.259 −30.369
4 26.517 −28.782
5 37.265 8.054
6 2.734 −52.888
7 55.650 −18.639

Table 4.2 Measured vertices in Leonardo’s drawing (in mm)

k uk vk

8 36.865 34.219
9 −25.283 36.394

10 −45.244 −16.728
11 18.814 −55.828
12 48.271 −34.749
13 56.767 0.764
14 46.037 33.043

k uk vk

15 17.609 52.536
16 −17.522 52.122
17 −45.244 31.161
18 −56.768 −2.147
19 −45.433 −35.867
20 −18.198 −56.563

These points are re-drawn in the right picture of Fig. 4.3 in black, together with the
‘corrected’ polyhedron (in grey). We see that the drawing is very precise in the centre,
but some vertices towards the periphery and in the background are less ‘divine’.
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Fig. 4.4 Stereographic view of Leonardo’s polyhedron (hold the picture rather close to the eyes and blend the
two drawings by staring through the paper)

Inspired by Leonardo’s polyhedral skeleton, the authors have not resisted the pleasure
to produce a divine stereographic view of this beautiful object in Fig. 4.4.

4.3 Leonardo against Verrocchio

Dispirited is the pupil who does not surpass his master.

(Leonardo’s maxim, see [13], p. 20)

In medieval paintings, holy persons were distinguished with a circular aureola behind
the head. During the Renaissance, progress of science transformed these aureolas into
ellipses. This gives us another occasion to submit the precision of one of Leonardo’s
paintings under scientific investigation. We choose the painting The Baptism of Christ
from 1472, where the young pupil Leonardo added an additional angel to a painting of
his master Andrea del Verrocchio (see Fig. 4.5). We measure several points on the two
ellipses, and minimize for each of them the least squares problem

F =
∑

i

(
Ax2

i + 2Bxiyi + Cy2
i − Dxi − Eyi − 1

)
= min !

which (this time) is linear in the unknowns A, B, C, D, E . The comparison of the
minimal value of F for the two ellipses then showed that Leonardo really had already
‘surpassed his master’, although Verrocchio had an easier job, because a large part of
his ellipse is not visible.

20

20

40

F = 5.2

F = 3.7

Verrocchio
Leo

na
rd

o

Fig. 4.5 Left: Leonardo’s and Verrocchio’s angels; right: best approximations of the ellipses
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4.4 The hanging glacier above Grindelwald
In summer 1999 a hanging glacier high up in the mountains above Grindelwald (Switzer-
land) started to advance and threatened the region below by an enormous ice fall. In
order to avoid a serious accident, a precise breaking off forecast was of great impor-
tance. Scientists from the ETH Zürich (M. Funk) therefore implanted a surveying stake
on the ice masses (see Fig. 4.6, left) and observed carefully the advancing positions of
the stake. The measured data are reproduced in Fig. 4.6 to the right. The time t = 0
corresponds to the 18th of July, 1999, at 7 a.m.
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.0 s =7 .93613t =3

.0 s =12 .59834t =4

.0 s =13 .97735t =5

.0 s =15 .80246t =6

.0 s =16 .21957t =7

.0 s =17 .66758t =8

.0 s =19 .66969t =9

.0 s =20 .208710t =10

.0 s =22 .464811t =11
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Fig. 4.6 Left: the Grindelwald hanging glacier with the surveying stake (Photo: M. Funk, from [7]); right: the
data and the breaking off forecast

Earlier experiences with ice falls (in particular one at the Weisshorn) have shown that
the increasing speed of such ice masses satisfies a formula

v(t) = v0 +
a0

(t∞ − t)n

where n ≈ 1
2 . By integrating this, we obtain for the positions

s(t) = s0 + v0t + a0

(
(t∞ − t)1−n − t1−n

∞
n − 1

)
. (4.5)

The problem is now, to determine the unknown constants s0, v0, a0 and t∞ in such a
way, that this function approaches the measured data points with minimal least squares
error. The solutions obtained in this way are given in Fig. 4.6, and predicted the ice fall
for t∞ = 27.25, which corresponds to the 14th of August at 1 p.m. Actually, the glacier
fell the 14th of August at 2 a.m. The forecast, 5 days before the event, was thus wrong
by less than half a day. For more details, see [7].

Conclusion. After having seen, how the observations of a couple of stars have helped
to develop modern science in such an extraordinary way, we must say, really, that stars
influence our lifes, just not the way readers of horoscopes are believing.
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invaluable help by scanning all the photographs and preparing their ps-files. The work
of Assyr Abdulle was partially supported by the Swiss National Science Foundation.

References
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