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In 1981, W. Stothérs [4] discovered a new, very interesting fact about polynomials. This
theorem was not being paid attention by mathematicians until R.C. Mason [2] rediscov-
ered this theorem in 1983, and Fermat’s last theorem for non-constant polynomials could
be proved in a simple way by means of this theorem. Of course, Fermat’s last theorem
for polynomials had already been proved before using algebraic geometric tools.

.

Vor nunmehr fast zehn Jahren wurde die Vermutung von Fermat durch A. Wiles bewie-
sen. Über diese spektakuläre Entdeckung wurde in dieser Zeitschrift mehrfach berichtet.
Die analoge Vermutung für Polynome war bereits lange zuvor bewiesen worden; ein
eleganter Beweis stammt von R.C. Mason aus dem Jahr 1983, in dem er einen bereits
1981 von W. Stothérs gefundenen, aber unbeachtet gebliebenen Satz wiederentdeckte.
Auch darüber und N. Snyders vereinfachenden Beweis wurde hier berichtet. In der
vorliegenden Arbeit beweisen die Autoren in Verallgemeinerung dazu, dass es keine
paarweise teilerfremden, nicht-konstanten Polynome a, b, c, d ∈ C[t] gibt, die der Glei-
chung

a(t)n1 + b(t)n2 + c(t)n3 = d(t)n4

genügen, sobald min{n1,n2,n3,n4} ≥ 8 gilt.

∗) The authors are supported in part by the Institute for Advanced Studies in Basic Sciences, Zanjan, IRAN.
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First of all, let us introduce some elementary tools that will be needed later to prove our
theorem.

We consider polynomials with complex numbers as coefficients. The set of all such
polynomials in a variable t is denoted by C[t]; if f ∈ C[t], f �= 0, we write

f(t) = c
r∏

i=1

(t − αi)mi ,

where α1, α2, . . . , αr are the distinct roots of f , and c is a constant, c �= 0. The integers
mi (i = 1, 2, . . . , r) are the multiplicities of the roots, and the degree of the polynomial
f is

deg( f) = m1 + · · · + mr .

The number of (distinct) roots of f will be denoted by n0( f), so by definition

n0( f) = r.

It is obvious that deg( f) can be very large, but n0( f) may be small. For instance,
f(t) = (t−α)10000 has degree 10000, but n0( f) = 1. If f , g are two non-zero polynomials,
then in general

n0( fg) ≤ n0( f) + n0(g) .

In addition, if f , g are relatively prime, then we actually have the equality

n0( fg) = n0( f) + n0(g).

Taking into account the above notations, we can now state Mason’s theorem.

Theorem 1 (Mason’s theorem) Let f, g, h ∈ C[t] be non-constant relatively prime
polynomials satisfying f + g = h. Then, we have

max{deg( f), deg(g), deg(h)} ≤ n0( fgh) − 1.

It can be easily seen that the equality is true by considering the following example:

Example:
f(t) = (t3 + 4t2 + 10t + 6)3 ,

g(t) = t
(

t4 + 6t3 + 21t2 + 35t +
63
2

)2
,

h(t) = 27t2 +
351
4

t + 216 .

Mason’s theorem has been proved in [1, 3] using logarithmic derivatives and divisibility
properties. Here, we generalize this theorem to four polynomials using the same argument
as in [3].
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Theorem 2 Let f, g, h, k ∈ C[t] be non-constant relatively prime polynomials satisfying
f + g + h = k . Then, we have

max{deg( f), deg(g), deg(h), deg(k)} ≤ 2n0( fghk) − 3 .

Proof . Without loss of generality, we may assume that deg( f) is maximal. Thus, it is
necessary to show that

deg( f) ≤ 2n0( fghk) − 3 .

To do this, we divide the equation f + g + h = k by k , and obtain

f
k

+
g
k

+
h
k

= 1 .

Put R = f
k , S = g

k and T = h
k . Then R + S + T = 1. Now, by taking derivatives on

both sides of the above equation and dividing by T′, we get

R′

T′ +
S′

T′ = −1 .

Now, repeating the above argument, putting E = R′

T′ , F = S′

T′ and taking derivatives, we
get the new equation E ′ + F ′ = 0, which we rewrite in the form

E ′

E
E +

F ′

F
F = 0 ,

or, equivalently,
E
F

= −F ′/F
E ′/E

.

Consider the quotient f/g. With our notation and the above equation, we obtain

f
g

=
g′′

g × h′
h − g′′

g × k ′

k − k ′′

k × h′
h − h′′

h × g′

g + h′′
h × k ′

k + k ′′

k × g′

g
f ′′
f × h′

h − f ′′
f × k ′

k − k ′′

k × h′
h − h′′

h × f ′
f + h′′

h × k ′

k + k ′′

k × f ′
f

, (1)

or, equivalently,

f
g

=

∣∣∣∣∣∣

1 1 1
g′

g
h′
h

k ′

k
g′′

g
h′′
h

k ′′

k

∣∣∣∣∣∣
·

∣∣∣∣∣∣

1 1 1
f ′

f
h′
h

k ′

k
f ′′

f
h′′
h

k ′′

k

∣∣∣∣∣∣

−1

. (2)

If we denote the right-hand side by P/Q, the following equality results:

f · Q = g · P . (3)

First, we rewrite the equality f + g + h = k as g + h − k = − f . Now, we distinguish
two cases:
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Case I. Suppose g, h and k are linearly independent over C. Therefore, the following
Wronskian is a non-zero polynomial:

∣∣∣∣∣∣

g(x) h(x) k(x)
g′(x) h′(x) k ′(x)
g′′(x) h′′(x) k ′′(x)

∣∣∣∣∣∣
�= 0 .

Since the above polynomial and g, h, k have a finite number of roots, there is a number
α ∈ C, such that

0 �=

∣∣∣∣∣∣

g(α) h(α) k(α)
g′(α) h′(α) k ′(α)
g′′(α) h′′(α) k ′′(α)

∣∣∣∣∣∣
= g(α)h(α)k(α)

∣∣∣∣∣∣∣

1 1 1
g′(α)
g(α)

h′(α)
h(α)

k ′(α)
k(α)

g′′(α)
g(α)

h′′(α)
h(α)

k ′′(α)
k(α)

∣∣∣∣∣∣∣
,

and, consequently, ∣∣∣∣∣∣∣

1 1 1
g′(α)
g(α)

h′(α)
h(α)

k ′(α)
k(α)

g′′(α)
g(α)

h′′(α)
h(α)

k ′′(α)
k(α)

∣∣∣∣∣∣∣
�= 0 .

Thus, the rational function P and consequently Q, is a non-zero polynomial. Now, we
suppose

f(t) = c1

∏
(t − αi)mi , g(t) = c2

∏
(t − β j)nj ,

h(t) = c3

∏
(t − γs)ps , k(t) = c4

∏
(t − δl)ql .

Taking logarithmic derivatives of f(t), g(t), h(t), k(t), we get respectively:

f ′

f
=

∑ mi

(t − αi)
,

f ′′

f
=

(∑ mi

(t − αi)

)2

−
∑ mi

(t − αi)2
,

g′

g
=

∑ nj

(t − β j)
,

g′′

g
=

(∑ nj

(t − β j)

)2

−
∑ nj

(t − β j)2
,

h′

h
=

∑ ps

(t − γs)
,

h′′

h
=

(∑ ps

(t − γs)

)2

−
∑ ps

(t − γs)2
,

k ′

k
=

∑ ql

(t − δl)
,

k ′′

k
=

(∑ ql

(t − δl)

)2

−
∑ ql

(t − δl)2
.

For the above rational functions, the quantity

D(t) =
∏

(t − αi)2
∏

(t − β j)2
∏

(t − γs)2
∏

(t − δl)2

is a common denominator; obviously, we have deg(D(t)) = 2n0( fghk). We multiply
both sides of (3) by D(t). It is clear that both sides are polynomials. We then obtain

f · Q · D(t) = g · P · D(t) ,
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or, equivalently,
f | g · P · D(t) .

Since ( f, g) = 1, we find
f |P · D(t).

Now, considering (1), we get

deg( f) ≤ deg(P · D(t))

≤ max

{
deg

(
D(t) · g′′

g
· h′

h

)
, deg

(
D(t) · g′′

g
· k ′

k

)
, . . . , deg

(
D(t) · k ′′

k
· g′

g

)}
.

Since
deg(D(t)) = 2n0( fghk) ,

we conclude that
deg( f) ≤ 2n0( fghk) − 3 .

Case II. Assume that g, h and k are linearly dependent over C, and g is a linear
combination of h, k over C. Therefore, there are λ, µ ∈ C satisfying

g = λh + µk .

Since g, h and k are relatively prime in pairs, then λ �= 0 and µ �= 0. By using Theorem 1
and n0(ghk) − 1 < n0( fghk) − 1, we obtain

max{deg(g), deg(h), deg(k)} ≤ n0( fghk) − 1 .

Since, − f = g + h − k and n0( fghk) − 1 ≤ 2n0( fghk) − 3, we get

max{deg( f), deg(g), deg(h), deg(k)} ≤ 2n0( fghk) − 3 . �

Remark 3 If f , g, h, k are linearly dependent, then

max{deg( f), deg(g), deg(h), deg(k)} ≤ 2n0( fghk) − 5 . (4)

Corollary 4
deg( fghk) ≤ 8n0( fghk) − 12.

As an application of our main theorem, we prove that a generalized version of Fermat’s
last theorem for polynomials holds true under certain conditions.

Theorem 5 Let n = min{n1,n2,n3,n4} be an integer ≥ 8. Then, there is no solution
of the equation

a(t)n1 + b(t)n2 + c(t)n3 = d(t)n4 ,

with non-constant relatively prime polynomials a, b, c, d ∈ C[t].
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Proof . Let f(t) = a(t)n1 , g(t) = b(t)n2 , h(t) = c(t)n3 and k(t) = d(t)n4 . Then, our main
theorem yields

deg(an1) ≤ 2n0(an1 bn2 cn3 dn4) − 3 .

However deg(an1) = n1 deg(a) and n0(an1) ≤ deg(a). Hence, we have

n deg(a) ≤ n1 deg(a) ≤ 2(deg(a) + deg(b) + deg(c) + deg(d)) − 3 . (5)

Similarly, we obtain analogous inequalities for b, c and d, i.e.,

n deg(b) ≤ 2(deg(a) + deg(b) + deg(c) + deg(d)) − 3 , (6)

n deg(c) ≤ 2(deg(a) + deg(b) + deg(c) + deg(d)) − 3 , (7)

n deg(d) ≤ 2(deg(a) + deg(b) + deg(c) + deg(d)) − 3 . (8)

Adding the three inequalities yields

n deg(abcd) ≤ 8 deg(abcd) − 12 ,

or
(n − 8) deg(abcd) ≤ −12 .

The last inequality implies n − 8 < 0, or n < 8, which contradicts our theorem’s
hypothesis. Thus the proof is complete. �
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