Elemente der Mathematik

Eine Anwendung der Inversion in der Molekularbiologie

Walter Wolking

Walter Wolking, geboren 1941, studierte Mathematik und Physik an der Universität Münster. Er wurde nach Abschluß des Studiums Gymnasiallehrer, promovierte 1978 an der Ruhruniversität in Bochum im Fach Mathematik und war während mehrerer Jahre Lehrbeauftragter an der Universität Osnabrück/Abt. Vechta. Sein Hauptinteresse gilt den diskreten Gruppen von Isometrien in der hyperbolischen Geometrie.

1 Einleitung

Bei der Entwicklung wirksamer Medikamente ist nicht nur die Kenntnis der Molekülstruktur von Proteinen (einfache Eiweißkörper) erforderlich, sondern es müssen Kriterien gefunden werden, die die Wirksamkeit maßgebend bestimmen. So ist etwa zu prüfen, unter welchen Umständen ein Antikörper mit einem Protein interagiert, genauer: Welche Voraussetzungen begünstigen das Andocken eines Antikörpers an ein Atom des Moleküls?

Es sind in den letzten Jahrzehnten (mit der Entwicklung des Computers) verschiedene Methoden und Algorithmen zur Bestimmung derartiger Reaktionsparameter entwickelt worden. Man geht dabei von der Vorstellung aus, dass jedes Atom des Proteins durch eine kleine Kugel, deren Radius durch die Reichweite der Van-der-Waals-Kräfte bestimmt ist, beschrieben werden kann. Zudem nimmt man an, dass ein in der Nähe des Proteins diffundierendes Teilchen kugelförmig ist.

Zu einem Atom eines Moleküls, dessen Atome kugelförmig vorausgesetzt werden, soll eine größtmögliche Kugel bestimmt werden, die das betreffende Atom berührt und deren Inneres das Molekül nicht trifft. Je größer eine derartige Kugel ist, desto größer ist die Wahrscheinlichkeit, dass ein diffundierendes Teilchen mit dem betreffenden Atom interagiert. Untersuchungen dazu sind z.B. im Zusammenhang mit der Wirksamkeit von Medikamenten wichtig. Zur Behandlung dieser Problemstellung werden in der vorliegenden Arbeit zunächst eine geeignete Transformation (Inversion) durchgeführt und die im Weiteren benutzten Eigenschaften vorgestellt; dadurch wird das Problem überschaubarer gemacht. Danach werden die einzelnen Lösungsschritte näher beschrieben und abschließend anhand eines Beispiels erläutert. Bei der Random-Walk-Methode (RW-Methode) erzeugt man mit einem Zufallsgenerator Zufallswege des diffundierenden Teilchens und bestimmt die Anzahl der Fälle, in denen ein zuvor bestimmtes Atom des Proteins das diffundierende Teilchen einfängt.

Eine zweite Methode (Steady-State) geht mehr von theoretischen Voraussetzungen aus. Hier nutzt man aus, dass für die Diffusion bestimmte Differentialgleichungen gelten, die man iterativ näherungsweise durch Differenzengleichungen löst.

Die oben erwähnten Methoden sind grundsätzlich verschieden. Sie führen jedoch, wie sich herausgestellt hat, zu weitgehend übereinstimmenden Ergebnissen.

Eine dritte, in den letzten Jahren entwickelte Methode wird in dieser Arbeit vorgestellt. Sie geht von der Vorstellung aus, dass ein Atom des Proteins besser mit einem Teilchen in seiner Umgebung interagiert, wenn es eine besonders große Kugel gibt, die das Atom berührt und deren Inneres frei von Atomen des Proteins ist. Gesucht ist demnach der maximale Kontaktradius einer derartigen Kugel.

Untersuchungen haben gezeigt, dass man bei kleineren maximalen Kontaktradien gute Übereinstimmungen mit den Ergebnissen der RW- und der Steady-State-Methode erhält. Bei größeren Radien treten z.T. erhebliche Unterschiede auf, d.h. es gibt Atome mit relativ großem maximalen Kontaktradius, jedoch mit einer (nach der RW- oder Steady-State-Methode ermittelten) geringen Zugänglichkeit. Diese Unterschiede lassen sich dadurch erklären, dass innerhalb der Molekülstruktur eines Proteins im Allgemeinen Löcher und Kanäle auftreten, deren Randatome einen relativ großen maximalen Kontaktradius haben, die jedoch für diffundierende Teilchen schwer zugänglich sind. Die Bestimmung des maximalen Kontaktradius hat gegenüber den anderen Methoden den Vorteil, dass sie erheblich weniger Zeit beansprucht.

Die Vielzahl der Atome eines Proteins im Zusammenhang mit der im Allgemeinen komplizierten Struktur lässt das Problem zur Bestimmung des maximalen Kontaktradius für ein bestimmtes Atom auf den ersten Blick sehr schwierig, dessen Lösung fast aussichtslos erscheinen. In Abschnitt 2 wird eine Transformation vorgestellt, die das Problem zunächst überschaubarer macht. Der Abschnitt 3 beschreibt im Einzelnen die Lösungsschritte. Ein konkretes Beispiel im letzten Abschnitt zeigt noch einmal den gesamten Lösungsweg.

2 Hilfe durch Inversion

Wie lassen sich nun bei einer gegebenen beliebigen Kugelkonfiguration Kontaktradien einer Kugel (eines Atoms) bestimmen? In einem 1. Schritt versucht man, das Problem überschaubarer darzustellen. Es ist z.B. erheblich leichter, in einer gegebenen Konfiguration nach einer bestimmten Ebene statt nach einer speziellen Kugel zu suchen. Wie so häufig in der Mathematik gelingt es mit Hilfe einer geeigneten Transformation, die Fragestellung zu vereinfachen. Eine derartige Transformation ist die Inversion (Spiegelung an Kugeln bzw. Kreisen).

Die im Nachfolgenden beschriebene Spiegelung an einer Kugel (bzw. in der Ebene an einem Kreis) I mit dem Mittelpunkt M_I ist eine Verallgemeinerung der Ebenenspiegelung (bzw. Geradenspiegelung). Sie wird anhand der Fig. 1 für den ebenen Fall (Spiegelung an einem Kreis) erklärt.

Der Spiegelpunkt P' von $P \ (\neq M_I)$ liegt auf dem gleichen von M_I ausgehenden Radialstrahl wie P und es gilt nach dem Kathetensatz des Euklid

$$|M_I P| \cdot |M_I P'| = |M_I T|^2 = r^2.$$

Liegt $P \ (\neq M_I)$ im Innern des Kreises I, so zeichnet man die Sehne durch P senkrecht zu $M_I P$ und erhält T und damit P'. Ist dagegen P' außerhalb von I vorgegeben, so bestimmt man einen Berührpunkt T einer Tangente von P' an den Kreis I und gewinnt somit den Spiegelpunkt P. Die Punkte P, P' liegen spiegelbildlich zu I, d.h. P' ist Spiegelpunkt von P und umgekehrt.

Die Spiegelung an einer Kugel ist durch die obige Definition unmittelbar klar.

Mit kleiner werdendem Abstand von $P \neq M_I$ zu M_I wird der Abstand von P' zu M_I immer größer. Er strebt für $P \to M_I$ gegen unendlich. Es ist also sinnvoll, einen ideellen Punkt ∞ (der den Raum abschließt) als Spiegelpunkt von M_I zu definieren. Danach sind also M_I und ∞ spiegelbildlich in Bezug auf I. Nähert sich $P(|M_IP| \neq r)$ immer mehr der Kugel I, d.h. $|M_IP| \to r$, dann gilt nach obiger Definition für den Spiegelpunkt P'ebenfalls $|M_IP'| \to r$. Setzt man also die Spiegelung stetig auf Punkte von I fort, so ist, da P' auf dem gleichen Radialstrahl wie P liegt, jeder Punkt von I Fixpunkt der Spiegelung. Weitere Fixpunkte gibt es offensichtlich nicht. Damit ist der Spiegelpunkt für jeden Punkt des durch ∞ abgeschlossenen Raumes definiert. Die Punkte innerhalb der Kugel I (einschließlich M_I) werden bei der Spiegelung an I eineindeutig auf die Punkte außerhalb von I (einschließlich ∞) abgebildet und umgekehrt. Die Punkte auf I sind genau die Fixpunkte.

Die oben beschriebene Spiegelung an Kugeln hat nun genau die Eigenschaft, die unseren Zwecken dienlich ist. Sie führt nämlich unter bestimmten Voraussetzungen eine Kugel in eine Ebene über.

Man erkennt zunächst unmittelbar, dass das Spiegelbild einer Ebene durch den Mittelpunkt M_I die Ebene selbst ist. Darüber hinaus wird jede durch M_I verlaufende Kugel ebenfalls auf eine Ebene abgebildet wie man anhand von Fig. 2 erkennt.

Es sei zunächst k ein durch M_I verlaufender Kreis, die Punkte P', A' sind die Spiegelpunkte von P bzw. A. Nach Definition gilt

$$|M_IP| \cdot |M_IP'| = r^2 = |M_IA| \cdot |M_IA'|, \text{ d.h. } \frac{|M_IP|}{|M_IA|} = \frac{|M_IA'|}{|M_IP'|}$$

Da zudem der Winkel bei M_I ($\angle PM_IA$) in beiden Dreiecken M_IAP und $M_IP'A'$ auftritt, folgt die Ähnlichkeit dieser Dreiecke. Also muss wegen $\angle APM_I = 90^0$ auch

 $\angle M_I A'P' = 90^0$ sein, d.h. das Spiegelbild von k ist eine Gerade. Das Gleiche gilt auch dann, wenn I von k geschnitten wird; die Gerade P'A' schneidet dann I. Umgekehrt wird jede vorgegebene Gerade P'A', die nicht durch M_I verläuft, auf einen Kreis durch M_I gespiegelt.

Gehen wir schließlich von einer Kugel k aus, so betrachte man sämtliche Schnittkreise mit dem durch M_IA verlaufenden Ebenenbüschel. Die Spiegelbilder bestimmen dann die Ebene durch A' senkrecht zu M_IA .

Zusammenfassend gilt:

(2.1) Jede Ebene (Gerade) durch den Mittelpunkt M_I einer Kugel I wird bei der Spiegelung an I auf sich abgebildet; jede nicht durch M_I verlaufende Ebene (Gerade) geht in eine Kugel (bzw. einen Kreis) durch M_I über und jede Kugel (bzw. jeder Kreis) durch M_I in eine Ebene (Gerade).

Verläuft also eine zu bestimmende Kugel durch den Mittelpunkt einer Kugel I, so geht sie bei Spiegelung an I in eine (zu bestimmende) Ebene über. Was geschieht jedoch bei einer derartigen Transformation mit den Kugeln (Atomen) der gesamten Konfiguration (des Proteins), genauer: wie sehen die Spiegelbilder von Kugeln aus, die nicht durch M_I verlaufen? Wird eventuell der anfangs erwähnte Vorteil durch eine kompliziertere Konfiguration wieder aufgehoben? Zum Glück ist dies nicht der Fall.

In Fig. 3 liegt der Mittelpunkt M_I außerhalb des Kreises k mit dem Mittelpunkt M_k ; I ist nicht eingezeichnet.

Ist P ein beliebiger Punkt auf k, so schneidet die Gerade M_IP den Kreis k in einem weiteren Punkt Q. Nach dem Sekantensatz ist das Produkt $|M_IP| \cdot |M_IQ| = c$ unabhängig

von *P*. Eine Streckung von M_I aus mit dem Streckfaktor $\frac{r^2}{c}$ (r = Radius von *I*) führt den Kreis k in einen Kreis k' über. Es gilt also $|M_IP'| = \frac{r^2}{c}|M_IQ| = \frac{r^2}{|M_IP|}$ und damit $|M_IP'| \cdot |M_IP| = r^2$. Der Punkt *P'* ist somit das Spiegelbild von *P* in Bezug auf *I*. ($M_{k'}$ ist nicht Spiegelpunkt von M_k .) Durchläuft *P* alle Punkte von k in einem bestimmten Sinne, so durchläuft *P'* den Kreis k' im entgegengesetzten Durchlaufsinn. Die Spiegelpunkte aller Punkte von k bilden den Kreis k'.

Ähnlich schließt man für den Fall, dass M_l im Innern von k liegt (s. [3, S. 104ff.]).

Sind I, k Kugeln, so betrachte man die Spiegelungen in allen Ebenen, die durch die Mittelpunkte von I, k verlaufen. Man erhält:

(2.2) Jede nicht durch M_I verlaufende Kugel wird durch die Spiegelung an I wieder auf eine Kugel abgebildet.

Vielfach braucht man Radius und Mittelpunkt der Bildkugel k' (s. folgende Abschnitte).

Die Spiegelpunkte Q', S' von Q, S bestimmen Radius und Mittelpunkt von k'. Sind I, k konzentrisch, so wähle man für Q, S die Schnittpunkte einer beliebigen Geraden durch M_I mit k.

Die in den Sätzen (2.1) und (2.2) angegebenen Eigenschaften sind in erster Linie für unsere Zwecke von Bedeutung. (Eine tiefergehende Behandlung der inversiven Geometrie findet man u.a. in [1, S. 20ff.]; [2, S. 240ff.]; [4] oder [5, S. 51ff.].)

3 Bestimmung der Kontaktradien

Nachdem im vorhergehenden Abschnitt der Ansatz zur Lösung des anstehenden Problems angedeutet wurde, sollen nun im Einzelnen die Lösungsschritte näher beschrieben werden.

Die Aufgabe besteht darin, zu einem vorgegebenen Atom A eines Moleküls (Proteins) eine größtmögliche (nicht unbedingt eindeutige) Kugel K zu finden, die das Atom berührt und deren Inneres sich mit den Atomen des Moleküls nicht überschneidet. Dazu müssen zunächst die Lage der einzelnen Atome (Mittelpunkte) und ihre Radien bekannt sein. Die zu A gehörende Kugel sei I_A mit dem Mittelpunkt M_A und dem Radius r_A .

Eine (zu bestimmende) Kontaktkugel K berührt neben I_A im Allgemeinen drei weitere Kugeln der Konfiguration; in Fig. 5 sind es die Kugeln K_1 , K_2 , K_4 (stark gezeichnet).

Man versucht nun zunächst, die gesuchte Kugel K in eine zu bestimmende Ebene E' zu transformieren. Dazu zeichnet man die mit K konzentrische Kugel K', die durch den

bekannten Mittelpunkt M_A (des Testatoms) verläuft. Sie hat im Vergleich zu K einen um r_A größeren Radius. Zugleich ändert man bei gleichbleibenden Mittelpunkten die Radien sämtlicher Kugeln mit Ausnahme von I_A so, dass alle K berührenden Kugeln in Kugeln übergehen, die K' berühren. Statt der vorgegebenen Kugeln K_i mit den Radien r_i betrachtet man also die jeweiligen konzentrischen Kugeln K_i^+ bzw. K_i^- (in Fig. 5 dünn gezeichnet) mit den Radien $|r_i - r_A|$; im Fall $r_i = r_A$ ist K_i^+ ein Punkt. In Fig. 5 berührt K' die Kugeln K_1^+ , K_2^- , K_4^+ mit den Radien $r_1 - r_A$ bzw. $|r_2 - r_A| = r_A - r_2$ bzw. $r_4 - r_A$. Bei dieser Verlagerung des Problems treten keine neuen Schwierigkeiten auf. Ist K' bekannt, so kann man unmittelbar auf K schließen.

Der nächste Schritt ist damit vorgegeben. Das System der Kugeln K_i^+ , K_i^- wird an der bekannten Kugel I_A gespiegelt. Nach Abschnitt 2 sind die Spiegelbilder wieder Kugeln $K_i^{+'}$, $K_i^{-'}$; die zu bestimmende Kugel K' wird zu einer zu bestimmenden Ebene E'.

Fig. 6

Die Fig. 6 zeigt das gespiegelte System. Die Kugeln $K_1^{+'}$, $K_4^{+'}$ bzw. $K_2^{-'}$ berühren E', liegen jedoch in verschiedenen Halbräumen (K_1^+ , K_4^+ bzw. K_2^- befinden sich auf verschiedenen Seiten von K'). Der Maßstab ist im Vergleich zur Fig. 5 erheblich größer; sämtliche Kugeln $K_i^{+'}$, $K_i^{-'}$ liegen im Innern von I_A . Die Suche nach K ist somit zur

Suche nach E' geworden. Das System der Kugeln $K_i^{+'}$, $K_i^{-'}$ kann aufgrund der Vorgaben ermittelt werden. Wie erhält man nun die oben beschriebenen Ebenen E'?

Da *K* im Allgemeinen I_A und mindestens drei vorgegebene Kugeln K_i berührt, gilt Entsprechendes für *K'* und damit für *E'*. Zudem müssen die Kugeln $K_i^{+'}$ im gleichen (durch *E'* bestimmten) Halbraum liegen im Unterschied zu den Kugeln $K_i^{-'}$. Liegt eine Kugel $K_i^{-'}$ nicht in dem Halbraum der $K_i^{+'}$, so muss sie zwar gemeinsame Punkte mit *E'* haben, braucht jedoch *E'* nicht unbedingt zu berühren. Verringert man z.B. bei unverändertem Mittelpunkt den Radius der Kugel K_2 in Fig. 5, so schneidet $K_2^{-'}$ die Ebene *E'*. Man erkennt hieraus, dass das Auftreten der Kugeln K_i^{-} (K_i hat einen kleineren Radius als I_A) die Bestimmung von *E'* im Allgemeinen erheblich erschwert. Im Weiteren sollen daher diese Fälle ausgeschlossen werden.

Es wird also nachfolgend vorausgesetzt, dass der Radius von I_A (Testatom) minimal ist $(r_A \leq r_i)$. Dann liegen sämtliche Kugeln $K_i^{+'} = K_i^{''}$ im gleichen durch E' bestimmten Halbraum. Da das für alle Ebenen E' gilt, liegen sämtliche $K_i^{''}$ im Durchschnitt der entsprechenden Halbräume. Dieser Durchschnitt ist konvex; mit 2 Punkten ist die gesamte Verbindungsstrecke im Durchschnitt enthalten. Die Ebenen E' sind somit Randebenen der konvexen Hülle des Kugelsystems $K_i^{''}$ und bilden im Allgemeinen ein Polyeder. Die Bestimmung dieser Randebenen ist also die weitere Aufgabe.

Besonders übersichtlich werden die Verhältnisse, wenn alle Kugeln des vorgegebenen Systems den gleichen Radius haben. In diesem Fall sind alle $K_i^+ = K_i^{'}$ wegen $r_i - r_A = 0$ Punkte, die bei Spiegelung an I_A wieder auf Punkte $K_i^{''}$ abgebildet werden.

Fig. 7

Die Randebenen der konvexen Hülle (s. Fig. 7) sind hier die Ebenen E', die durch mindestens drei der gegebenen Punkte verlaufen, wobei sämtliche nicht in E' enthaltenen Punkte des Systems in ein und demselben Halbraum liegen. Die Bestimmung dieser Ebenen ist eine Aufgabe, die mit Grundkenntnissen der Vektorrechnung gelöst werden kann.

Im allgemeinen Fall berührt eine Randebene E' mindestens drei vorgegebene Kugeln K_i'' (s. Fig. 8).

Anhand der Fig. 8 erkennt man unmittelbar, dass zur Bestimmung eines Einheitsnormalenvektors \vec{n}_0 von E' drei Gleichungen gelten:

$$E_1: \vec{n}_0(\vec{r}_{M_2''} - \vec{r}_{M_1''}) = r_2'' - r_1'',$$

$$E_2: \vec{n}_0(\vec{r}_{M_3''} - \vec{r}_{M_1''}) = r_3'' - r_1'',$$

$$S_1: \vec{n}_0^2 = 1 \quad (\text{wegen } |\vec{n}_0| = 1).$$

Dieses Gleichungssystem mit drei Unbekannten (Koordinaten von \vec{n}_0) hat im Allgemeinen zwei Lösungen. (Man kann von zwei Seiten aus eine Ebene so verschieben, dass sie drei vorgegebene Kugeln berührt.) Die erste und die zweite Gleichung lassen sich als Ebenengleichungen deuten, die zwei Ebenen E_1 , E_2 mit den Normalenvektoren $\vec{r}_{M_2''} - \vec{r}_{M_1''}$ bzw. $\vec{r}_{M_3''} - \vec{r}_{M_1''}$ bestimmen; der Abstand dieser Ebenen zum Nullpunkt ist wegen $|\vec{r}_{M_1''} - \vec{r}_{M_1''}| > r_i'' - r_1'' (i = 2, 3)$ kleiner als 1. Der Zielpunkt des gesuchten Vektors \vec{n}_0 liegt dann im Schnitt g der beiden Ebenen. Im Allgemeinen ist g eine Gerade, die die Einheitskugel S_1 in zwei Punkten schneidet.

Hat man einen Normalenvektor gefunden, so kann man, da Mittelpunkte und Radien der Kugeln bekannt sind, Punkte der Tangentialebene berechnen (möglich sind 2 zu jedem \vec{n}_0). Schließlich ist noch sicherzustellen, dass sämtliche Mittelpunkte der Kugeln K_i'' im gleichen (abgeschlossenen) Halbraum liegen und der Abstand zu E' nicht kleiner als der jeweilige Radius ist, eine elementar lösbare Aufgabe.

Es bleibt noch die Frage, inwieweit bei der Bestimmung der konvexen Hülle die Fälle zu berücksichtigen sind, bei denen das obige Gleichungssystem keine oder keine eindeutigen Lösungen für \vec{n}_0 hat. Diese Ausnahmen sind leicht zu überschauen. Sie sind im Wesentlichen durch die Fig. 9 und 10 gekennzeichnet.

Fig. 9

In Fig. 9 gibt es keine gemeinsame Tangentialebene. Die Ebenen E_1, E_2 sind parallel und nicht identisch (wegen $\vec{r}_{M_2''} - \vec{r}_{M_1''} = -(\vec{r}_{M_3''} - \vec{r}_{M_1''})$ und $r_2'' - r_1'', r_3'' - r_1'' > 0$).

Fig. 10

Verschiebt man die Kugel K_1'' (Mittelpunkt M_1'') geringfügig nach unten oder nach oben, so schneiden sich E_1 , E_2 in einer Geraden g, die jedoch nicht die Einheitskugel trifft. Vergrößert man schließlich bei unverändertem Mittelpunkt K_1'' , so dass die Radien gleichgroß sind, dann gibt es unendlich viele Tangentialebenen. Sie sind die Tangentialebenen eines Zylinders; die Ebenen E_1 , E_2 sind dann identisch und schneiden die Einheitskugel in einem Großkreis.

Die Fig. 10 zeigt den Fall, in dem sämtliche Tangentialebenen einen Kegel bestimmen. Die Ebenen E_1 , E_2 sind wiederum identisch, schneiden die Einheitskugel jedoch nicht in einem Großkreis. Wählt man hier eine kleinere Kugel $K_2^{''}$, so erhält man die entsprechenden im Zusammenhang mit der Fig. 9 beschriebenen Fälle.

Ein eingehender Nachweis, dass damit alle Ausnahmen erfasst sind, bleibt dem Leser überlassen.

Man erkennt, dass diese Ausnahmen bei der Bestimmung der konvexen Hülle im Allgemeinen kaum eine Rolle spielen. Eine Tangentialebene von K_2'' , K_3'' in Fig. 9 etwa wird durch "Abrollen" auf dem Zylinder im Allgemeinen auf eine weitere Kugel außerhalb des Zylinders treffen, es sei denn, alle Kugeln liegen im Innern.

Nach den bisher beschriebenen Lösungsschritten kann man also davon ausgehen, dass die Randebenen der konvexen Hülle (des Kugelsystems K_i'') bekannt sind. Um nun rückwärts auf die Kontaktkugeln K zu schließen, hat man die zuvor durchgeführten Schritte umzukehren und zwar in umgekehrter Reihenfolge. Es sei daran erinnert, dass man das System K_i'' dadurch erhält, dass man die Radien der von I_A verschiedenen Kugeln K_i um r_A verringert und anschließend die so geänderten Kugeln an I_A spiegelt. Sämtliche K_i'' liegen somit im Innern von I_A . Die Umkehrung der Spiegelung (an I_A) ist die Spiegelung selbst. (Führt man eine Spiegelung zweimal hintereinander an derselben Kugel aus, so erhält man die identische Abbildung.) Man muss also zunächst die Randebenen E' wiederum an I_A spiegeln.

Für die Beschreibung der Lage von I_A innerhalb des Kugelsystems K_i ist dabei die Lage des Mittelpunktes M_A nicht ganz unwichtig. Es ist nicht ausgeschlossen, dass M_A auf einer Randebene oder außerhalb der konvexen Hülle liegt.

Im 1. Fall ist das Spiegelbild K' von E' die Ebene E' selbst (K' in Fig. 5 ist eine Ebene), alle Bildkugeln K'_i von K''_i liegen außerhalb von I_A in ein und demselben durch K' bestimmten Halbraum. Vergrößert man nun die Radien von K'_i um r_A und verschiebt K' parallel um die gleiche Länge r_A , so erhält man eine Tangentialebene von I_A , wobei ein Halbraum keine der Kugeln K_i enthält. Die Kugel I_A liegt dann an exponierter Stelle im Außenbereich der Konfiguration.

Im 2. Fall trennt eine Randebene E' den Punkt M_A von den Kugeln K_i'' . Dann liegen alle Spiegelbilder K_i' im Innern des Spiegelbildes K' von E'; dies entspricht in Fig. 5 dem Fall, dass das Innere von K' alle Kugeln K_i^+ enthält. Vergrößert man hier die Radien von K_i' und K' um den gleichen Betrag r_A , so erhält man eine Kugel, in deren Äußerem keine Kugel K_i liegt (K hat in diesem Spezialfall einen um r_A größeren Radius als K'); die exponierte Lage von I_A ist noch ausgeprägter.

In erster Linie interessiert jedoch der Fall, dass M_A ein innerer Punkt der konvexen Hülle ist, also für jede Randebene E' in dem Halbraum liegt, der sämtliche Kugeln K_i'' enthält. In diesem Fall sind die Spiegelbilder K' der Randebenen sämtlich Kugeln. Verringert man die Radien dieser Kugeln um r_A , so erhält man die Kontaktkugeln K, deren Inneres frei von Kugeln K_i ist (siehe Fig. 5).

In einer abschließenden Zusammenfassung sind die wesentlichen Schritte des gesamten Verfahrens noch einmal aufgeführt.

Die Kontaktradien einer Kugel I_A (mit minimalem Radius r_A) eines zu Beginn dieses Abschnittes beschriebenen Kugelsystems erhält man wie folgt:

Die Radien sämtlicher von I_A verschiedenen Kugeln K_i werden bei unveränderten Mittelpunkten um r_A verkürzt und die so geänderten Kugeln (evtl. Punkte) K'_i an I_A gespiegelt. Man erhält ein System von Kugeln (evtl. Punkten) K''_i , zu dem die Randebenen E' der konvexen Hülle zu bestimmen sind.

Diese Randebenen werden an I_A zurückgespiegelt.

Ist das Spiegelbild K' einer Ebene E' die Ebene E' selbst oder liegen (bis auf evtl. Berührpunkte) innerhalb von K' sämtliche K'_i , so befindet sich I_A an exponierter Stelle (im Außenbereich) der vorgegebenen Kugelkonfiguration (Kontaktradius ∞).

In allen übrigen Fällen erhält man den zugehörigen Kontaktradius dadurch, dass man den Radius von K' um r_A verringert. Diejenige Randebene E' mit dem kürzesten Abstand zum Mittelpunkt M_A bestimmt den maximalen Kontaktradius.

4 Beispiel

Im folgenden Beispiel ist eine Konfiguration von fünf Kugeln K_i (i = 0, 1, 2, 3, 4) durch die Angabe der Mittelpunkte M_i und Radien r_i gegeben:

$$\begin{split} M_0(0,0,0) \,, \, r_0 &= 1 \,; \, M_1(0,0,3) \,, \, r_1 = 2 \,; \, M_2(3,\sqrt{7},3) \,, \, r_2 = 2 \,; \\ M_3(-4,0,-3) \,, \, r_3 &= 4 \,; \, M_4(1.5,0,-2) \,, \, r_4 = 1.5. \end{split}$$

Man überzeugt sich leicht, dass der Abstand zweier Mittelpunkte mindestens gleich der Summe der zugehörigen Radien ist; die Kugeln überschneiden sich also nicht. Es berühren K_1 , K_3 , K_4 die Kugel K_0 ; K_2 berührt K_1 , jedoch nicht K_0 . Die Kontaktradien von K_0 (= I_A) sollen bestimmt werden.

1. Schritt

Die Radien der Kugeln K_1 , K_2 , K_3 , K_4 werden um $r_0 = 1$ verringert. Man erhält Kugeln K'_i mit den obigen Mittelpunkten $M'_i = M_i$ (i = 1, 2, 3, 4) und den Radien $r'_1 = 1$; $r'_2 = 1$; $r'_3 = 3$; $r'_4 = 0.5$.

2. Schritt

Durch Spiegelung der Kugeln K'_i an K_0 gewinnt man Kugeln K''_i (Mittelpunkte M''_i). Die Radien r''_i (und Mittelpunkte) erhält man dadurch, dass man die zu K_0 nächsten bzw. entferntesten Punkte von K'_i an K_0 spiegelt (s. Bemerkungen zu Fig. 4). Es folgt

$$\begin{split} r_{1}^{'} &= 1 \; ; \; M_{1}^{'}(0,0,3) \qquad \Rightarrow \; K_{1}^{''} : \; r_{1}^{''} &= \frac{1}{2} \left(\frac{1}{2} - \frac{1}{4} \right) = \frac{1}{8} \; ; \; M_{1}^{''} \left(0,0,\frac{3}{8} \right) \; , \\ r_{2}^{'} &= 1 \; ; \; M_{2}^{'}(3,\sqrt{7},3) \; ; \; |r_{M_{2}}^{'}| = 5 \quad \Rightarrow K_{2}^{''} : \; r_{2}^{''} &= \frac{1}{2} \left(\frac{1}{4} - \frac{1}{6} \right) = \frac{1}{24} \; ; \\ \vec{r}_{M_{2}^{''}}^{''} &= \frac{1}{2} \left(\frac{1}{4} + \frac{1}{6} \right) \frac{1}{5} \left(\begin{array}{c} 3\\\sqrt{7}\\3 \end{array} \right) = \frac{1}{24} \left(\begin{array}{c} 3\\\sqrt{7}\\3 \end{array} \right) \; ; \; M_{2}^{''} \left(\frac{1}{8}, \frac{\sqrt{7}}{24}, \frac{1}{8} \right) \end{split}$$

und ähnlich

$$K_{3}^{''}: r_{3}^{''} = \frac{3}{16}; M_{3}^{''}\left(-\frac{1}{4}, 0, -\frac{3}{16}\right) \qquad K_{4}^{''}: r_{4}^{''} = \frac{1}{12}; M_{4}^{''}\left(\frac{1}{4}, 0, -\frac{1}{3}\right)$$

3. Schritt

Zur Bestimmung der konvexen Hülle der Kugeln $K_i^{''}$ benutzen wir das in Abschnitt 3 beschriebene Verfahren. Dazu berechnen wir ausführlich eine Tangentialebene zu $K_1^{''}$, $K_2^{''}$, $K_3^{''}$, die Randebene der konvexen Hülle ist. Die Gleichungen der übrigen Tangentialebenen (Randebenen) lassen sich ähnlich bestimmen und werden zusammenfassend (mit den Eckpunkten des Polyeders) angegeben. (Die Zahlen wurden zunächst auf neun Dezimalstellen berechnet, sind hier jedoch auf vier Stellen gerundet.) Der Radius braucht in dem angegebenen Lösungsverfahren nicht minimal zu sein. Mit den im 2. Schritt bestimmten Punkten und Ortsvektoren folgt

$$\vec{v} = \vec{r}_{M_2''} - \vec{r}_{M_1''} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = \frac{1}{24} \begin{pmatrix} 3 \\ \sqrt{7} \\ -6 \end{pmatrix}; \quad r_2'' - r_1'' = -\frac{1}{12};$$
$$\vec{w} = \vec{r}_{M_3''} - \vec{r}_{M_1''} = \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix} = -\frac{1}{16} \begin{pmatrix} 4 \\ 0 \\ 9 \end{pmatrix}; \quad r_3'' - r_1'' = \frac{1}{16}.$$

Zur Bestimmung eines Normalenvektors \vec{n}_0 geht man von den in Abschnitt 3 angegebenen Gleichungen aus:

$$E_1 : \vec{n}_0 \vec{v} = -\frac{1}{12}$$
$$E_2 : \vec{n}_0 \vec{w} = \frac{1}{16},$$
$$S_1 : \vec{n}_0^2 = 1.$$

Es handelt sich hier um ein klassisches System von drei Gleichungen mit drei Unbekannten (Koordinaten von \vec{n}_0), das ohne großen Aufwand von Hand oder mit dem solve-Befehl eines Taschenrechners gelöst werden kann. Man erhält für \vec{n}_0 die beiden Möglichkeiten

1)
$$\vec{n}_0 = \begin{pmatrix} -0.0064 \\ -0.9941 \\ -0.1082 \end{pmatrix}$$
, 2) $\vec{n}_0 = \begin{pmatrix} -0.7570 \\ 0.6134 \\ 0.2253 \end{pmatrix}$

Zu jeder der obigen Lösungen sind die Berührpunkte der gesuchten Tangentialebene E' durch die Ortsvektoren

$$\vec{b}_{1/2} = \begin{pmatrix} 0\\0\\\frac{3}{8} \end{pmatrix} \pm \frac{1}{8}\vec{n}_0$$

bestimmt. So erhält man für Lösung 1)

$$\vec{b}_1 = \begin{pmatrix} -0.0008\\ -0.1243\\ 0.3615 \end{pmatrix}$$
; $\vec{b}_2 = \begin{pmatrix} 0.0008\\ 0.1243\\ 0.3885 \end{pmatrix}$.

Als Nächstes muss untersucht werden, ob die Kugeln $K_1'', K_2'', K_3'', K_4''$ in ein und demselben durch E' bestimmten Halbraum liegen. Dies lässt sich mit dem Skalarprodukt überprüfen. Die Produkte $\vec{n}_0(\vec{r}_{M_i''} - \vec{b}_j)$, i = 1, 2, 3, 4, müssen für festes j gleiche Vorzeichen haben. Zudem ist $|\vec{n}_0(\vec{r}_{M_i''} - \vec{b}_j)| = r_i''$ für i = 1, 2, 3 und $|\vec{n}_0(\vec{r}_4'' - \vec{b}_j)| \ge r_4''$ nachzuweisen. Es stellt sich heraus, dass nur im Falle j = 2 (also für \vec{b}_2) alle Bedingungen erfüllt sind. Die zugehörige Ebenengleichung ist dann

$$E_1': 0.0064x + 0.9941y + 0.1082z = 0.1656$$

Untersucht man die Möglichkeit 2), so stellt man fest, dass die obigen Bedingungen in beiden Fällen (für die entsprechenden \vec{b}_1, \vec{b}_2) nicht sämtlich zutreffen.

Für die Tangentialebenen an $K_1^{''}$, $K_2^{''}$, $K_4^{''}$ bzw. $K_1^{''}$, $K_3^{''}$, $K_4^{''}$ bzw. $K_2^{''}$, $K_3^{''}$, $K_4^{''}$ erhält man ähnlich

$$\begin{split} E_2 &: 0.9107x + 0.3188y + 0.2626z = 0.2235 \,, \\ E_3^{'} &: 0.2131x - 0.9769y + 0.0164z = 0.1311 \,, \\ E_4^{'} &: 0.1805x + 0.9789y - 0.0953z = 0.1602 \,. \end{split}$$

Die vier Ebenen E'_1, E'_2, E'_3, E'_4 bestimmen einen Vierflächler (Polyeder), der die konvexe Hülle von $K''_1, K''_2, K''_3, K''_4$ berandet und, wie man leicht feststellt, in seinem Innern den Nullpunkt enthält. Die Schnitte der obigen Ebenen ergeben die Eckpunkte

$$\begin{split} P_1 &= (-0.7483, -0.2349, 3.7314), \quad P_2 &= (0.1513, 0.1499, 0.1445), \\ P_3 &= (0.8979, 0.0749, 0.7887), \qquad P_4 &= (0.5421, -0.0326, -0.9893). \end{split}$$

4. Schritt

Ist jeweils *d* der Abstand einer Ebene E'_i (i = 1, 2, 3, 4) zum Nullpunkt, so erhält man aus $\frac{1}{d}$ den Durchmesser und damit den Radius $r_{K'}$ einer Kugel K'.

5. Schritt

Die Radien r_K der K_0 kontaktierenden Kugeln sind dann $r_K = r_{K'} - r_0 = r_{K'} - 1$.

Man erhält für r_K die vier Werte 2.1204; 2.8125; 1.2374; 2.0195.

Der maximale Kontaktradius ist also 2,8125.

Literatur

- [1] Beardon, A.F.: The Geometry of Discrete Groups. Springer-Verlag, New York 1993.
- [2] Brannan, D.A.: Inversive Geometry. Cambridge Univ. Press, 1999.
- [3] Coxeter, H.S.M.: Unvergängliche Geometrie. Birkhäuser Verlag, Basel 1981, 104-127.
- [4] Coxeter, H.S.M.; Greitzer, S.L.: Geometry Revisited. Math. Assoc. of America, 1975.
- [5] Stahl, S.: The Poincaré half-plane. Bostan-Jones and Bartlett Publ., 1994.
- [6] Yeates, T.O.: Algorithms for Evaluating the Long-range Accessibility of Protein Surfaces. J. molecular biology 249 (1995), 804–815.
- [7] Wang, H.J. u.a.: A Vectorized Algorithm for Calculating the Accessible Surface Area of Macromolecules. J. comp. chemistry 12 (1991), 868–871.

Walter Wolking Holdorferstr. 1 D-49401 Damme, Deutschland