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When we conjecture a theorem in geometry, we first try to prove it using whatever means
we find at our disposal. After establishing its truth, we may follow it up by a reverse ana-
lysis, first described by Pappus of Alexandria as analysis, asking not whether the theorem
in question holds, but what does one need to assume for it to hold (see [10] for the history
of the regressive undertaking). Hilbert [4] expressed this enterprise with his characteristic
eloquence:

Unter der axiomatischen Erforschung einer mathematischen Wahrheit ver-
stehe ich eine Untersuchung, welche nicht dahin zielt, im Zusammenhange
mit jener Wahrheit neue oder allgemeinere Sätze zu entdecken, sondern die
vielmehr die Stellung jenes Satzes innerhalb des Systems der bekannten
Wahrheiten und ihren logischen Zusammenhang in der Weise klarzulegen
sucht, daß sich sicher angeben läßt, welche Voraussetzungen zur Begründung
jener Wahrheit notwendig und hinreichend sind.

.

Im Zusammenhang mit dem Finden und Beweisen mathematischer Sätze ist auch die
Frage nach einem minimalen Axiomensystem, mit Hilfe dessen die entsprechenden
Sätze hergeleitet werden können, ein zentrales Element mathematischen Arbeitens.
In dem nachfolgenden Artikel nimmt sich der Autor dieser Frage im Hinblick auf vier
Sätze der Elementargeometrie an, darunter der Satz, dass Schwerpunkt, Umkreismittel-
punkt und Höhenschnittpunkt auf einer Geraden, der sogenannten Eulerschen Geraden,
liegen. In der Regel werden diese vier Sätze mit Hilfe des Axiomensystems, das der
Euklidischen Geometrie zugrunde liegt, bewiesen. Der Autor zeigt nun, dass sie bereits
mit Hilfe dreier einfacher Axiome, die minimale Forderungen an die Punktspiegelungs-
operation stellen, beweisbar sind.
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A reverse analysis is admittedly less well defined than the proof of a statement inside an
axiom system, as it is not at all clear what should count for an “assumption”, nor which
set of assumptions ought to be declared optimal.

What we search in a reverse analysis is to minimize the number and the complexity of
both the notions and the assumptions used in the proof of a specific statement, and we may
well arrive at several different axiom systems, expressed with different primitive notions,
which are not at all comparable. The reverse analyses which were carried out for two
geometric problems in [8] and [9] arrived at precisely such different and incomparable
axiom systems.

In the present paper we present four elementary geometry problems, one of which is the
Euler line problem, whose reverse analysis leads to the same particularly rudimentary
axiom system, for a very weak geometry with a Euclidean flavour.

It has been noticed in [1] and [11] that the Euler line can be generalized to an affine setting.
It turns out that much less than affine geometry is enough to prove a generalization of the
Euler line statement.

All the results we have in mind can be formulated in terms of point-reflections and mid-
points alone. The basic axioms describing the Euclidean behaviour of these two binary
operations were proposed by D. Vakarelov [13]. The axiom system is stated in a language
with one sort of variables, to be interpreted as points and to be denoted by uppercase Latin
characters, in terms of a single binary operation ·, with A · B to be read as the reflection of
A in B . Its axioms are

A 1 A · A = A

A 2 (∀A)(∀B)(∃=1 X) B · X = A

A 3 ((A · B) · C) · D = ((A · D) · C) · B

The axiom A2 states the existence and uniqueness of the midpoint of any pair of points A
and B , which will be denoted by µ(AB), whereas A3 is a closure condition – one could
say “configuration theorem” (Schnittpunktsatz), although we do not have actual “lines” in
our “geometry” – expressed in the language of point reflections.

Following Vakarelov, we will introduce a few definitions that will bring us closer to the
concepts of affine geometry. Let M be a model of the above axioms. For points A, B, C, D
in M, we say that the pair (A, B) is equivalent to the pair (C, D), and write (A, B) ∼
(C, D), if there exists a point X such that A · X = D and B · X = C . The relation
∼ is an equivalence relation, and an addition can be defined on the set S := M/ ∼ of
equivalence classes, which turns S into an abelian group in which, for all a, the equation
x + x = a has a unique solution x . Fixing a point O in M, and writing [A, B] for the
equivalence class under ∼ of (A, B), we obtain that [O, A · B] = 2[O, B] − [O, A], and
[O, µ(AB)] = 1

2 ([O, A] + [O, B]). To simplify the notation, and bring it in line with the
one more familiar from the complex plane (see e.g. [6]), we may think of [O, A] as the
affix of point A, and write instead of [O, A] simply A. Our formulas for the operations of
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reflection in a point and midpoint thus become those of Grassmann [2]:

A · B = 2B − A and µ(AB) = A + B

2
. (1)

We can also define a collinearity relation Col, with Col(A, B, C) to be read as “points A,
B , C are collinear (but not necessarily different)”, as the smallest relation satisfying, for all
A, B, C, D, the following conditions: Col(A, B, µ(AB)); Col(A, B, A); if Col(A, B, C)

then Col(C, B, A) and Col(B, A, C); and if A �= B , Col(A, B, C), Col(A, B, D), then
Col(A, C, D). With its help we can also define a notion of parallelism of segments ‖, by
stipulating that the segment AB be parallel to the segment C D, i.e., AB ‖ C D, if and
only if A �= B , C �= D, and there exist E and F , with E �= F , both collinear with C and
D, such that (A, B) ∼ (E, F), or else A = B and C = D. Given (1), we have AB ‖ C D
if and only if the affixes satisfy B − A = λ(D − C), where λ is a rational number of the
form m

2n , where m ∈ Z\{0} and n ∈ N∪{0}. The particular case of the parallelism relation
(A, B) ∼ (C, D) is equivalent with B − A = D − C .

We will now show that four problems usually stated within Euclidean geometry, involv-
ing metric notions (such as orthogonality and segment-congruence), can be rephrased as
statements in terms of point-reflections only and can be proved inside the axiom system
A1–A3.

Not only can they be thus rephrased, but in some sense, this is all they require, and any
proof carried out in the Euclidean framework will have to be unnecessarily complex. In
our setting the proofs turn out to be immediate consequences of the associativity and com-
mutativity of addition.

1. The center of mass G, the circumcenter O, and the orthocenter H of a triangle are
collinear, and OG : G H = 1 : 2.

2. The four lines, each drawn from the midpoint of a side of a cyclic quadrilateral
perpendicular to the opposite side, are concurrent.

3. Given a triangle ABC , let A′, B ′, C ′ be the reflections of the circumcenter O in
µ(BC), µ(C A), µ(AB). Prove that the midpoints of AA′, B B ′, and CC ′ coincide.

4. In a triangle ABC , the midpoint M of side BC , the reflection of A in the circumcen-
ter O, and the orthocenter H are collinear.

The first is the Euler line theorem, the second can be found in [5, p. 36], and also showed
up in the first round of the 1977 edition of the Bundeswettbewerb Mathematik, the third is
Problem 11003 in [3], and the fourth is Problem 232 in [12].

Their rephrasing as statements in the language of point-reflections reads as follows:

1′. Given points O, A, B , C , G, M = µ(AB), N = µ(AC), P = µ(BC), and Q =
O · G, such that G · (P · G) = A, there is a point X such that AX ‖ O P , B X ‖ O N ,
and C X ‖ O M . The point X is precisely G · Q.
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Fig. 2: The statement 2′

2′. Let A, B , C , D, O be five points and let M = µ(AB), N = µ(BC), P = µ(C D),
Q = µ(D A), O ′ = O · µ(QN). Then (O, M) ∼ (P, O ′), (O, N) ∼ (Q, O ′),
(O, P) ∼ (M, O ′), (O, Q) ∼ (N, O ′) (put differently, the four parallels from the
midpoints of each side to the lines joining O to the midpoint of the “opposite” side
meet in O ′).

3′. Let A, B , C , O be four points, and let A′ = O · µ(BC), B ′ = O · µ(AC), C ′ =
O · µ(AB). Then µ(AA′) = µ(B B ′) = µ(CC ′).

4′. Let A, B , C , O be four points and let A′ = A · O, M = µ(BC), N = µ(B A),
P = µ(AC), H = A′ · M . Then O M ‖ AH , O N ‖ C H , O P ‖ B H .

That the statements do require a Euclidean behaviour of parallels can be easily seen from
the fact that these statements fail to hold in hyperbolic geometry (in fact, whenever the
underlying metric is non-Euclidean, see [7] for the Euler line case). Thus Axiom A1 will
surely have to hold to reflect the most basic property of symmetry in a point, and we do
need to have midpoints to even formulate the statements to be proved, so A2 needs to hold.
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Fig. 3: The statement 3′
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Fig. 4: The statement 4′

Since the statements hold only when parallels behave in a Euclidean manner, A3 – or an
axiom similar to it – is needed as well.

The proofs are immediate, bearing in mind (1). To simplify computations even more, we
may assume that the affix O is the neutral element of the abelian group S.

In 1′ the hypothesis G · (µ(BC) · G) = A leads to A = 3G − B − C , and, since X = 3G,
the statement AX ‖ Oµ(BC) holds, as it is equivalent to X − A = 3G − A = B + C =
2( B+C

2 − O), and the other relations follow analogously.

In 2′ O ′ = A+B+C+D
2 , M = A+B

2 , P = C+D
2 , so (O, M) ∼ (P, O ′) is equivalent to

A+B
2 = A+B+C+D

2 − C+D
2 , and the other relations follow analogously.

In 3′ A′ = B +C , B ′ = C + A, C ′ = A+ B , so µ(AA′) = µ(B B ′) = µ(CC ′) = A+B+C
2 .

In 4′ A′ = −A, M = B+C
2 , H = B+C+A, so O M ‖ AH , as M−O = B+C

2 = 1
2 (H−A),

and the other relations are proved analogously.
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