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1 Introduction

Let M0 be a smooth, closed, strictly convex hypersurface in euclidean space R
n+1 and

suppose that M0 is given by a smooth embedding F0 : Sn → R
n+1 of the unit n-sphere

Sn = {x ∈ R
n+1 : |x | = 1}. We consider the initial value problem for the inverse harmonic

mean curvature flow

d

dt
F(x, t) = H−1(x, t)ν(x, t), (∗)

F(·, 0) = F0,

.

Im nachfolgenden Beitrag erhalten wir Einblick in einen aktuellen Forschungszweig
der Differentialgeometrie. Bekanntlich lassen sich geometrische Strukturen auf Man-
nigfaltigkeiten mit besonderen Eigenschaften sehr oft durch partielle Differentialglei-
chungen beschreiben, eine Thematik, die auch bei den jüngsten Lösungsansätzen zur
Poincaré Vermutung eine zentrale Rolle spielt. Zu diesen Gleichungen gehören bei-
spielsweise die geometrischen Flussgleichungen, die im allgemeinen aus nichtlinearen
Systemen parabolischer Differentialgleichungen bestehen. Die Lösbarkeit solcher
Gleichungen bringt oft erhebliche Schwierigkeiten mit sich. So ist es in der Regel
unmöglich, aus beliebigen Anfangsdaten die exakte Lösung zu einem späteren Zeit-
punkt explizit zu berechnen. Umso erstaunlicher ist es, dass dies beim inversen har-
monischen mittleren Krümmungsfluss dennoch möglich ist. Durch die Betrachtung
einfacher Beispiele gelingt es dem Autor, den komplexen Gegenstand konkret zu illu-
strieren.
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where

H := 1
1
κ1

+ · · · + 1
κn

is the harmonic mean curvature of the hypersurface Mt parameterized by Ft := F(·, t) :
Sn → R

n+1, κ1, . . . , κn denote the principal curvatures of Mt and ν(·, t) is the outer unit
normal vectorfield along Mt .

There are numerous important works on this flow. One should for example consult An-
drews [3], [4], Chow-Liou-Tsai [8], Gerhardt [10] and Urbas [13]. It has been shown in
Urbas [13] that (∗) admits a smooth solution for t ∈ [0,∞) and that the solutions tend to
infinity as t → ∞. Moreover, the hypersurfaces stay strictly convex and embedded and
after a time dependent homothetic rescaling the rescaled hypersurfaces converge smoothly
to a round sphere (see also Gerhardt [10] for an extension to starshaped hypersurfaces).
In Chow-Liou-Tsai [8] the authors considered hypersurfaces driven by functions of the in-
verse harmonic mean curvature and also proved that convexity is preserved for a wide class
of such flows, including (∗). Andrews [3], [4] treated both inward and outward directed
flows.

For a geometric evolution equation it is in general not possible to determine the explicit
solution. If T denotes the first time where a singularity occurs, one rather studies the blow-
up behaviour of such flows as t → T . Under certain conditions for the initial hypersurface
it is often possible to classify the singularities, at least after a suitable rescaling procedure.
E.g. under the assumption that the initial hypersurface is convex one was able to prove for
a wide class of such flows (inward and outward directed) that a homothetically rescaled
flow smoothly converges to a round sphere as t → T .

If a convex hypersurface is evolving under the nonlinear parabolic equation (∗) given by
the inverse harmonic mean curvature flow, it is therefore astonishing that it is possible to
obtain the explicit solution. We state the main theorem:

Theorem 1.1. Let M0 be a smooth, closed, strictly convex hypersurface in euclidean space
R

n+1 and suppose that M0 is given by a smooth embedding F0 : Sn → R
n+1 of the unit

n-sphere Sn = {x ∈ R
n+1 : |x | = 1}. The inverse harmonic mean curvature flow

d

dt
F(x, t) = H−1(x, t)ν(x, t),

F(·, 0) = F0,

admits a smooth, strictly convex solution for t ∈ [0,∞).

The hypersurfaces Mt := F(Sn, t) ⊂ R
n+1 can be parameterized by their inverse Gauss

maps Yt : Sn → Mt in the following way

Yt (x) = DS̄(x, t), for all (x, t) ∈ Sn × [0,∞)

where S̄(·, t) : R
n+1 \ {0} → R is the homogeneous extension of degree one of the support

function S(·, t) : Sn → R of Mt defined by

S̄(λx, t) := λS(x, t), for all (x, t) ∈ Sn × [0,∞), and all λ > 0.
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Here, D is the gradient in R
n+1 and the support function S(·, t) is given by the formula

S(x, t) = ent
∫

Sn
H (x, y, t)S(y, 0)dσ(y), (1.1)

where H (x, y, t) is the heat kernel and dσ the standard volume element on Sn. S(·, 0)

denotes the support function of the initial hypersurface M0.

Remark 1.2. The following theorem about the heat kernel is well-known (cf. Berger-
Gauduchon-Mazet [5]):

Theorem. [5] Let M be a compact Riemannian manifold, { fi } be an orthonormal basis of
L2(M) consisting of eigenfunctions with corresponding eigenvalues λi (i.e., � fi =−λi fi ),
then

H (x, y, t) =
∑

e−λi t fi (x) fi (y).

Moreover, the eigenfunctions fk on the unit n-sphere are the spherical harmonics Yn,k

which are restrictions to Sn of the homogeneous harmonic polynomials of degree k in
R

n+1. They can be expressed in terms of the Legendre polynomials (see Müller [12] for
more details on spherical harmonics).

Example 1.3. Let us briefly discuss the one-dimensional situation. If n = 1, then H−1 =
1
k , where k denotes the curvature of the evolving convex curves γt . In this case, the flow

d

dt
γt = 1

k
ν (∗′)

can also be viewed as the one-dimensional version of the inverse mean curvature flow

d

dt
F = 1

H
ν

which is important in General Relativity (see Huisken-Ilmanen [11] for details). The eigen-
values λk of the Laplacian on S1 ∼= [0, 2π) are λk = k2, k ∈ N with multiplicity 2. More-
over, the functions 1√

π
cos (kx), 1√

π
sin (kx) form an orthonormal basis of L2(S1). For the

heat kernel on S1 we get

H (x, y, t) = 1

π

∑
k∈N

e−k2t(cos (kx) cos (ky) + sin (kx) sin (ky)
)
.

According to Theorem 1.1, the support function S(·, t) of γt is given by the formula

S(x, t) =
∑
k∈N

e(1−k2)t(ck cos (kx) + sk sin (kx)
)
, (1.2)

where the constants ck , sk are defined by

ck := 1

π

∫ 2π

0
cos (ky)S(y, 0)dy, sk := 1

π

∫ 2π

0
sin (ky)S(y, 0)dy
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and S(·, 0) denotes the support function of the initial curve γ0. If S̄ denotes the extension
of S to R

2 \ {0} as above, then

DS̄(x, t) = S(x, t)

(
cos x

sin x

)
+ S′(x, t)

(− sin x

cos x

)
, for all x ∈ [0, 2π),

where we have set

S′(x, t) := ∂

∂x
S(x, t).

Consequently

Y(x, t) =
∑
k∈N

e(1−k2)t cos (kx)

(
ck cos x − ksk sin x

ck sin x + ksk cos x

)

+
∑
k∈N

e(1−k2)t sin (kx)

(
sk cos x + kck sin x

sk sin x − kck cos x

)

is the parameterization of γt by the inverse Gauss map.

Example 1.4. We give an explicit example. Let a ∈ [0, 1) be a number and assume that
the initial support function is given by

S(y, 0) = 1 + a sin2(y) = 2 + a

2
− a

2
cos (2y).

It then easily follows that
sk = 0 for all k ∈ N;

c0 = 2 + a, c2 = −a

2
and ck = 0 for all k ∈ N \ {0, 2}.

By formula (1.2) the support function of the evolving curves γt is

S(x, t) = (2 + a)et − a

2
e−3t cos (2x)

and the inverse Gauss maps are

Y(x, t) =
(
(2 + a)et − a

2
e−3t cos (2x)

)(
cos x

sin x

)
+ ae−3t sin (2x)

(− sin x

cos x

)
.

If we consider the rescaled curves γ̃t := e−tγt , then the support functions S̃ and inverse
Gauss maps Ỹ(x, t) of γ̃t are

S̃(x, t) = 2 + a − a

2
e−4t cos (2x),

Ỹ(x, t) =
(

2 + a − a

2
e−4t cos (2x)

)(
cos x

sin x

)
+ ae−4t sin (2x)

(− sin x

cos x

)
.

In particular, if t → ∞, then the support functions S̃(x, t) tend to the constant a +2 which
means that the curves converge uniformly to the circle of radius a + 2 centered at the
origin. Fig. 1 shows the flow for a = − 3

4 at different time steps, Fig. 2 depicts the rescaled
solution and Fig. 3 shows the curves in a single coordinate plane.
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Fig. 1 The flow d
dt γt = 1

k ν for the curve γ0 with support function S(x) = 1 − 3
4 sin2 (x) at the different time

steps t = j
10 , j ∈ {0, 1, 2, 3, 4, 5, 6, 7}

O O O O

O O O O

Fig. 2 The rescaled curves γ̃t = e−t γt with γt as in Fig. 1

2 Support functions

Let M be a smooth, closed, strictly convex hypersurface in R
n+1. We shall recall some

facts about the support function of convex hypersurfaces (for more results see Bonnesen-
Fenchel [6]). Since M is strictly convex, the Gauss map is invertible. Thus, we may assume
that M is parameterized by the inverse Gauss map Y : Sn → M ⊂ R

n+1. This means that
ν(x) = x . Without loss of generality, we may assume that M encloses the origin. The
support function S of M is defined by

S(x) := 〈x,Y(x)〉 for all x ∈ Sn,
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O O

Fig. 3 The curves in Fig. 1 resp. Fig. 2 in a single coordinate plane

where 〈·, ·〉 denotes the standard inner product of R
n+1. One can extend S to a homoge-

neous function S̄ on R
n+1 \ {0} of degree one by

S̄(λx) := λS(x) for all x ∈ Sn and λ > 0.

It then follows
DS̄(x) = Y(x) for all x ∈ Sn,

where DS̄ is the gradient of S̄ in R
n+1. Let σ = σi j dx i ⊗ dx j denote the standard metric

on Sn and ∇ its induced Levi-Civita connection. We want to compute the Hessian ∇2S of
S. We have

∇i S = ∇i 〈Y, x〉 = 〈Y,∇i x〉
because ν(x) = x and 〈∇iY, ν〉 = 0. Taking another covariant derivative we obtain

∇i∇ j S = 〈∇iY,∇ j x〉 + 〈Y,∇i∇ j x〉.
The Gauss-Weingarten equations imply

∇i∇ j x = −τi j x,

where τi j is the second fundamental form of Sn and because τi j = σi j we have

∇i∇ j x = −σi j x .

On the other hand
〈∇iY,∇i x〉 = 〈∇iY,∇iν〉 = hi j

is the second fundamental form of M , so that we derive

∇i∇ j S = hi j − σi j S. (2.1)
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Moreover, the Weingarten equation gives

∇iν = hi j g jk∇kY.

Then

σi j = 〈∇i x,∇ j x〉 = 〈∇iν,∇ j ν〉 = 〈hik gkl∇lY, h js gst∇tY〉 = hik h jl g
kl

so that
σi j = hikh jl g

kl , (2.2)

where gkl is the inverse of the induced metric gi j on M . From (2.1) and (2.2) we immedi-
ately obtain

�S = σ i j ∇i∇ j S = H−1 − nS. (2.3)

Next we will compute the evolution equation of the support function S. To this end let
us assume that Mt is a smooth family of closed, strictly convex hypersurfaces in R

n+1

parameterized by a smooth embedding Ft : Sn → Mt ⊂ R
n+1 such that

d

dt
Ft (x) = f (x, t)ν(x, t),

where f (x, t) is a smooth speed function. It is then possible to find a uniquely determined
diffeomorphism 
t : Sn → Sn such that the embedding

Yt : Sn → Mt , Yt (x) := Ft (
t (x))

is the inverse Gauss map. Thus, we obtain

d

dt
St = d

dt

〈Yt (x), x
〉 = d

dt

〈
Ft (
t (x)), x

〉

=
〈

∂

∂ t
Ft (
t (x)) + DFt

(
∂


∂ t

)
, x

〉
=

〈
∂

∂ t
Ft (
t (x)), x

〉

= 〈 f (
t (x), t)ν(
t (x), t), x〉 = f.

In particular, if f is given by the inverse of the harmonic mean curvature, then (2.3) implies

Lemma 2.1. If Mt is a smooth family of closed, strictly convex hypersurfaces in R
n+1

evolving by the inverse harmonic mean curvature flow (∗), then the support function sat-
isfies the linear equation

d

dt
S = �S + nS,

where � is the Laplacian w.r.t. the standard metric on Sn.

Corollary 2.2. If Mt is a smooth family of closed, strictly convex hypersurfaces in R
n+1

evolving by the inverse harmonic mean curvature flow (∗), then the support function S(·, t)
of Mt is given by

S(x, t) = ent
∫

Sn
H (x, y, t)S(y, 0)dσ(y),

where H (x, y, t) is the heat kernel on Sn and dσ the standard volume element on Sn.
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Proof . The function S̃(x, t) := e−nt S(x, t) satisfies the heat equation

d

dt
S̃ = �S̃ (2.4)

and then

S̃(x, t) =
∫

Sn
H (x, y, t)S̃(y, 0)dσ(y).

But since S̃(y, 0) = S(y, 0) we obtain the result. �

Corollary 2.3. Let M0 be a smooth, closed, strictly convex hypersurface in R
n+1 and

let Mt be the corresponding smooth family of hypersurfaces evolving by their inverse har-
monic mean curvature. Then the rescaled hypersurfaces M̃t := e−nt Mt converge smoothly
to a round sphere centered at the origin as t → ∞.

Proof . If S(·, t) and S̃(·, t) are the support functions of Mt resp. M̃t , then

S̃(x, t) = e−nt S(x, t).

In addition, by equation (2.4) S̃ solves the heat equation on Sn and therefore smoothly
converges to a constant as t → ∞. It is clear that a smooth convergence of the support
function implies a smooth convergence of the corresponding hypersurfaces as well. On
the other hand, the support function is constant if and only if the hypersurface is a round
sphere centered at the origin. �

Proof of the main theorem. It is well-known that a solution of (∗) exists for t ∈ [0,∞) and
that the hypersurfaces Mt stay convex and embedded during the flow (cf. Urbas [13]). It
is also well-known that the rescaled hypersurfaces M̃t := e−nt Mt converge smoothly to a
round sphere centered at the origin. It remains to prove the precise formula for the support
function and the inverse of the Gauss maps. This has been shown in Corollary 2.2 and the
equation for the inverse of the Gauss maps Y follows from DS̄|Sn = Y . �
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