
Elem. Math. 60 (2005) 45 – 56
0013-6018/05/020045-12

c© Swiss Mathematical Society, 2005

Elemente der Mathematik

A simple proof of Sen’s possibility theorem
on majority decisions

Christian Elsholtz and Christian List

Christian Elsholtz studied mathematics at the Technical University of Darmstadt,
where he received his Ph.D. He worked at the University of Stuttgart and completed
his habilitation at the Technical University of Clausthal. He is currently a lecturer in
pure mathematics at Royal Holloway University of London. Much of his work is on
gaps between prime numbers.

Christian List holds a B.A. in mathematics and philosophy, and an M.Phil. and a
D.Phil. in politics from the University of Oxford. After visiting positions at the
Australian National University in Canberra, at Harvard University and MIT, he was a
postdoctoral research fellow at Nuffield College in Oxford. He is currently a lecturer
in political science at the London School of Economics. His research area lies at the
intersection between political philosophy and mathematical decision theory.

1 Introduction

Condorcet’s paradox shows that pairwise majority voting over three or more candidates
can lead to cyclical majority preferences, even when the preferences of individual voters
are transitive: Suppose there are three voters, labelled 1, 2 and 3, and three candidates,
labelled x1, x2 and x3 with the following preferences (the symbol ‘�’ means ‘is strictly

.

Das Condorcetsche Wahlparadoxon zeigt, dass paarweise Mehrheitsvergleiche zwi-
schen drei oder mehr Kandidaten einen ungewollten Zykel ergeben können: nämlich,
dass eine Mehrheit Kandidat A vor B bevorzugt, eine Mehrheit B vor C , aber den-
noch eine Mehrheit für C vor A stimmt, selbst dann, wenn jeder einzelne Wähler eine
nichtzyklische Präferenzliste hat. Mehrheitszykel sind ein in der Politikwissenschaft
häufig diskutiertes Phänomen, da sie Fragen zu den Grundlagen der Demokratie auf-
werfen. In einer wichtigen Arbeit gab der Wirtschaftsnobelpreisträger Amartya Sen
eine hinreichende Bedingung an, die solche Zykel ausschließt. In der vorliegenden
Arbeit präsentieren die Autoren einen elementaren Beweis von Sens Satz und disku-
tieren eine Variante seiner Bedingung. Weiterhin geben sie eine notwendige und hin-
reichende Bedingung zur Vermeidung von Zykeln an, die zeigt, dass Sens Bedingung
nicht in befriedigender Weise weiter verallgemeinert werden kann.
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preferred to’):

Voter 1: x1 � x2 � x3,
Voter 2: x2 � x3 � x1,
Voter 3: x3 � x1 � x2.

Then there are majorities of 2 out of 3 voters for x1 � x2, for x2 � x3 and for x3 � x1.
The resulting majority preference ordering is cyclical: x1 � x2 � x3 � x1. Cyclical ma-
jority preferences (in short: cycles) are democratically undesirable, as they are unsuitable
for reaching consistent democratic decisions. A large literature in social choice theory ad-
dresses the threat posed by cycles for the functioning of democratic decision mechanisms
(for example, Riker [4]). Several sufficient conditions for the avoidance of cycles have
been identified. Black [1] showed that, if the n-tuple of individual preference orderings
across n voters satisfies an appealing condition called single-peakedness, the resulting ma-
jority preference ordering will be transitive. Later, other sufficient conditions for transitive
majority preference were found, amongst them single-cavedness (Inada [2]), separabil-
ity into two groups (Inada [2]), and latin-squarelessness (Ward [6]). (See also Section 3
below.)

In a famous paper, Sen [5] generalized these results, showing that a condition that is less
demanding than, but implied by, each of these conditions is already sufficient for avoid-
ing cycles. Sen’s condition is called triplewise value-restriction. However, Sen’s condition
and theorem are not intuitively straightforward. This note aims to make the mechanism
underlying Sen’s result easily accessible, by giving an elementary proof of Sen’s theo-
rem, together with a simple reformulation of the condition of triplewise value-restriction.
In terms of our reformulation, we also discuss how Sen’s condition is logically related to
its precursors. Finally, we suggest that, although there is still some logical space between
Sen’s sufficient condition for the avoidance of cycles and a necessary and sufficient condi-
tion, this space may be too narrow to allow an appealing generalization of Sen’s condition.

We are grateful to an anonymous referee for comments.

2 An easy proof of a slightly simplified version of Sen’s theorem

We first prove a slightly simplified variant of Sen’s result. Suppose there are n voters,
labelled 1, 2, . . . , n, and k candidates, labelled x1, x2, . . . , xk . To avoid ties under majority
voting, we assume that n is odd. And suppose each voter holds a preference ordering
over the candidates. We use the notation x1 � x2 to mean that the voter strictly prefers
candidate x1 to candidate x2. Each voter’s preference ordering is assumed to be complete
and transitive.

Completeness. For any two candidates x1, x2, either x1 � x2 or x2 � x1 (but not both).

Transitivity. For any x1, x2, x3, if x1 � x2 and x2 � x3, then x1 � x3.

An n-tuple of individual preference orderings across n voters is called a profile of indi-
vidual preference orderings, in short a profile. A profile is triplewise value-restricted if it
satisfies the following property.
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Triplewise value-restriction. For every triple of distinct candidates x1, x2, x3, there exists
xi ∈ {x1, x2, x3} and r ∈ {1, 2, 3} such that no voter ranks xi as his or her r -th preference
among x1, x2, x3.

Theorem 1 (Sen 1966) For every profile satisfying triplewise value-restriction, pairwise
majority voting generates a transitive (hence acylic) majority preference ordering.

Sen’s original result allows voters to be indifferent between two or more candidates. In this
section, we assume that voters always order candidates in a strict ranking. In Section 4, we
explain how our method can be used to prove Sen’s result in full generality.

Our proof is in three steps. In a first step, we identify a condition that is sufficient for
avoiding cycles over triples of alternatives. In a second step, we show that, if this condition
holds for every triple of alternatives, this is sufficient for the avoidance of any cycles. In a
third step, we show that our condition (applied to every triple of alternatives) is logically
equivalent to triplewise value-restriction, as stated above.

Step 1. Consider three candidates, x1, x2, x3. There are six logically possible strict prefer-
ence orderings over x1, x2, x3:

1 : x1 � x2 � x3, 2 : x1 � x3 � x2, 3 : x2 � x1 � x3,

4 : x2 � x3 � x1, 5 : x3 � x1 � x2, 6 : x3 � x2 � x1.

Let ahi j denote the number of voters holding the preference ordering xh � xi � x j (ahi j is
a non-negative integer). A preference ordering can be represented as a matrix M = (mij ),
where

mij =
{

1 if xi � x j ,

0 otherwise.

The six orderings above thus correspond to the following matrices:

M123 =

0 1 1

0 0 1
0 0 0


 , M132 =


0 1 1

0 0 0
0 1 0


 , M213 =


0 0 1

1 0 1
0 0 0


 ,

M231 =

0 0 0

1 0 1
1 0 0


 , M312 =


0 1 0

0 0 0
1 1 0


 , M321 =


0 0 0

1 0 0
1 1 0


 .

Pairwise majority voting corresponds to the following weighted sum:

S = a123M123 + a132M132 + a213M213 + a231M231 + a312M312 + a321M321

=

 0 a123 + a132 + a312 a123 + a132 + a213

a213 + a231 + a321 0 a123 + a213 + a231
a231 + a312 + a321 a132 + a312 + a321 0


 .

S = (si j ) induces a majority preference ordering defined as follows. For each i , j , xi � x j

holds if and only if si j > s j i .
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When can a cycle occur under pairwise majority voting? There are two logically possible
cycles: x1 � x2 � x3 � x1 and x1 � x3 � x2 � x1.

Suppose we have a majority cycle of the first type, x1 � x2 � x3 � x1.

x1 � x2 means s12 > s21, i.e. a123 + a132 + a312 > a213 + a231 + a321. (1)

x2 � x3 means s23 > s32, i.e. a123 + a213 + a231 > a132 + a312 + a321. (2)

x3 � x1 means s31 > s13, i.e. a231 + a312 + a321 > a123 + a132 + a213. (3)

We now add pairs of these inequalities.

(1) + (2) implies a123 > a321,

(1) + (3) implies a312 > a213,

(2) + (3) implies a231 > a132.

Analogously, a majority cycle of the second type, x1 � x3 � x2 � x1, implies the reverse
inequalities, a321 > a123, a213 > a312 and a132 > a231. Hence, we have the following
lemma:

Lemma 1 If there is a majority cycle over x1, x2, x3, then (a123 > a321 and a312 > a213
and a231 > a132) or (a321 > a123 and a213 > a312 and a132 > a231).

An obvious corollary of Lemma 1 is the following:

Lemma 2 If (a123 ≤ a321 or a312 ≤ a213 or a231 ≤ a132) and (a321 ≤ a123 or a213 ≤ a312
or a132 ≤ a231), then there is no majority cycle over x1, x2, x3.

We can infer a corollary of Lemma 2 which is suitable for proving Sen’s theorem.

Lemma 3 If (a123 = 0 or a312 = 0 or a231 = 0) and (a321 = 0 or a213 = 0 or a132 = 0),
then there is no majority cycle over x1, x2, x3.

Step 2. Now suppose there are k candidates.

Lemma 4 (Standard result) If there is a cycle over m candidates (3 ≤ m ≤ k) in
the majority preference ordering, then there is also a cycle over three candidates in that
ordering.

Proof. Suppose there is a cycle over m candidates, x1, x2, . . . , xm , in the majority prefer-
ence ordering, i.e. x1 � x2 � . . . � xm � x1. We have x1 � x2 and x2 � x3. Either
x3 � x1 or x1 � x3. If x3 � x1, we have found a cycle over three candidates, namely x1,
x2, x3. If x1 � x3, we consider x1 � x3 and x3 � x4. Again, either x4 � x1, in which case
we have a cycle over x1, x3, x4, or x1 � x4. We continue until we reach either a cycle over
three candidates, or until we reach x1 � xm−1, xm−1 � xm . But xm � x1, and hence we
have a cycle over x1, xm−1, xm . �

Note that any complete strict preference ordering is either transitive or cyclic (where the
ordering is cyclic if there exists at least one cycle). Lemma 3 and Lemma 4 imply the
following theorem:
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Theorem 2 Suppose, for every triple of distinct candidates x1, x2, x3, we have (a123 = 0
or a312 = 0 or a231 = 0) and (a132 = 0 or a321 = 0 or a213 = 0). Then pairwise majority
voting generates a transitive (hence acylic) majority preference ordering.

Step 3. To see that Sen’s theorem is an immediate corollary of Theorem 2, we give a
simple reformulation of triplewise value-restriction.

Lemma 5 A profile satisfies triplewise value-restriction if and only if, for every triple of
distinct candidates x1, x2, x3 : (a123 = 0 or a312 = 0 or a231 = 0) and (a132 = 0 or
a321 = 0 or a213 = 0).

Proof. For every triple of distinct candidates x1, x2, x3, Sen’s condition of triplewise value-
restriction corresponds to a disjunction of nine cases, as detailed in the first two rows of the
following table. Each of the nine cases is equivalent to a corresponding case in the third
row, and the condition of Lemma 5 is precisely the disjunction of these cases.

x1 x2 x3 x1 x2 x3 x1 x2 x3

is not ranked 1st is not ranked 2nd is not ranked 3rd
by any voter if and only if by any voter if and only if by any voter if and only if

a123 = 0 a213 = 0 a312 = 0 a213 = 0 a123 = 0 a132 = 0 a231 = 0 a132 = 0 a123 = 0
& & & & & & & & &

a132 = 0 a231 = 0 a321 = 0 a312 = 0 a321 = 0 a231 = 0 a321 = 0 a312 = 0 a213 = 0

Table 1 �

3 Sen’s condition and its precursors

Table 1 is revealing in another respect. Each of the three sets of conditions (‘is not ranked
1st’, ‘is not ranked 2nd’, ‘is not ranked 3rd’) corresponds to one of the precursors of Sen’s
condition mentioned in Section 1.

The first set of conditions (‘is not ranked 1st’) corresponds to single-cavedness for every
triple. The general condition of single-cavedness requires the existence of a single ordering
of all candidates from ‘left’-most to ‘right’-most such that each voter has a least preferred
position on that ‘left’/‘right’ ordering with increasing preference for candidates as they
get increasingly distant from the least preferred position. Single-cavedness implies single-
cavedness for every triple, but not vice-versa.

Single-cavedness. There exists a bijection �: {x1, x2, . . . , xk} → {1, 2, . . . , k} such that,
for every triple of candidates x1, x2, x3 and every voter i , if (�(x1) < �(x2) < �(x3)) or
(�(x3) < �(x2) < �(x1)), then [x2 � x1 implies x3 � x2] for voter i .

The bijection � represents the left-right ordering of the candidates, and the condition
(�(x1) < �(x2) < �(x3)) or (�(x3) < �(x2) < �(x1)) means that x2 is ‘between’ x1
and x3 with respect to that left-right ordering.

The weaker condition of single-cavedness for triples permits a different bijection � for
every triple of candidates. For the purposes of avoiding cycles, the weaker condition is
sufficient.
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st1
nd2
rd3
th4
th5

3x 2x 4x 1x 5x

1 2 3 4 5
Ω

Fig. 1 Two orderings which are single-caved.

The second set of conditions (‘is not ranked 2nd’) corresponds to separability into two
groups for every triple. The general condition of separability into two groups requires
that any subset of the set of all candidates can be partitioned into two parts such that
each voter prefers any candidate in one of the two parts to any candidate in the other.
Separability into two groups implies separability into two groups for every triple, but not
vice-versa.

Separability into two groups. Any subset Y of the set of all candidates can be partitioned
into two disjoint non-empty subsets Y1 and Y2 such that, for every voter i , either [for all
x1 ∈ Y1 and all x2 ∈ Y2, x1 � x2] or [for all x1 ∈ Y1 and all x2 ∈ Y2, x2 � x1] for voter i .

Separability into two groups for every triple requires the existence of the required partition
only for any triple of candidates.

{x1 , x2 , x4}{

{

x3 , x5}

{x1 , x4}x2}

{x1 , x2 , ,x3 x4 , x5}

Fig. 2 Separability into two groups. For each vertex, each voter prefers
any candidate in one branch to any candidate in the other.

The third set of conditions (‘is not ranked 3rd’) corresponds to single-peakedness for ev-
ery triple. The general condition of single-peakedness requires the existence of a single
ordering of all candidates from ‘left’-most to ‘right’-most such that each voter has a most
preferred position on that ‘left’/‘right’ ordering with decreasing preference for candidates
as they get increasingly distant from the most preferred position. Single-peakedness im-
plies single-peakedness for every triple, but not vice-versa.



A simple proof of Sen’s possibility theorem on majority decisions 51

st1
nd2
rd3
th4
th5

3x 2x 4x 1x 5x

1 2 3 4 5
Ω

Fig. 3 Two orderings which are single-peaked.

Single-peakedness. There exists a bijection � : {x1, x2, . . . , xk} → {1, 2, . . . , k} such
that, for every triple of candidates x1, x2, x3 and every voter i , if (�(x1) < �(x2) <

�(x3)) or (�(x3) < �(x2) < �(x1)), then [x1 � x2 implies x2 � x3] for voter i .

The weaker condition of single-peakedness for triples permits a different bijection � for
every triple of candidates. For the purposes of avoiding cycles, the weaker condition is
sufficient.

4 Proving Sen’s result in full generality
Finally, let us briefly sketch how our method can be used to allow the consideration of
indifference in individual preference orderings, and thus to prove Sen’s result in full gen-
erality. Allowing indifference means that there are three different ways in which a voter
might rank two candidates, x1 and x2. The voter might rank one strictly above the other,
i.e. x1 � x2 or x2 � x1; the voter might have an equal preference for both, i.e. x1 ≈ x2; or
the voter might not rank or compare them at all. The first possibility corresponds to a strict
ordering, the second to indifference, and the third to an incomplete ordering, between x1
and x2. Following Sen’s result, we will only consider the first two possibilities and rule out
incomplete orderings. In principle, however, incomplete orderings are also representable
in terms of the matrix formalism introduced in Section 2.

Over triples of candidates, there are 7 possible preference orderings with indifference be-
tween two or more candidates, in addition to the 6 strict orderings shown above: x1 �
x2 ≈ x3, x1 ≈ x2 � x3, x2 � x1 ≈ x3, x1 ≈ x3 � x2, x3 � x1 ≈ x2, x2 ≈ x3 � x1, and
x1 ≈ x2 ≈ x3. (Note that x1 � x2 ≈ x3 and x1 � x3 ≈ x2 are considered the same.)

We define a corresponding notation. Here ahi j has the same interpretation as before. For
weak orderings, let (for example) ah�i≈ j denote the number of voters holding the prefer-
ence ordering xh � xi ≈ x j . The matrix corresponding to x1 � x2 ≈ x3, for example, is

M1�2≈3 =

0 1 1

0 0 0
0 0 0


.

Strict orderings correspond to matrices with three non-zero entries, as defined in Section 2,
weak orderings correspond to matrices with two non-zero entries, except x1 ≈ x2 ≈ x3,
which corresponds to the matrix consisting only of zeros.
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In analogy to the argument above, pairwise majority voting corresponds to the following
weighted sum:

S =a123M123 +a132M132 +a213M213 +a231M231 +a312M312 +a321M321

+a1≈2�3M1≈2�3 +a1≈3�2M1≈3�2 +a2≈3�1M2≈3�1

+a3�1≈2M3�1≈2 +a2�1≈3M2�1≈3 +a1�2≈3M1�2≈3

=

 0 a123+a132+a312+a1≈3�2+a1�2≈3 a123+a132+a213+a1≈2�3+a1�2≈3

a213+a231+a321+a2≈3�1+a2�1≈3 0 a123+a213+a231+a1≈2�3+a2�1≈3

a231+a312+a321+a2≈3�1+a3�1≈2 a132+a312+a321+a1≈3�2+a3�1≈2 0




For simplicity, we assume that, for any pair of candidates x1, x2, the number of voters who
do not have the preference ordering x1 ≈ x2 is odd. This assumption is different from
Sen’s. Sen’s own assumption is that, for any triple of candidates x1, x2, x3, the number of
voters who do not have the preference ordering x1 ≈ x2 ≈ x3 is odd. The following two
examples show that Sen’s assumption and our assumption are logically independent.

Case (i): Our assumption is satisfied, but Sen’s is not. Consider 6 voters with the following
preference orderings:

(1) x1 ≈ x2 � x3 � x4, (2) x1 ≈ x3 � x2 � x4, (3) x1 ≈ x4 � x2 � x3,

(4) x2 ≈ x3 � x1 � x4, (5) x2 ≈ x4 � x1 � x3, (6) x3 ≈ x4 � x1 � x2.

Case (ii): Sen’s assumption is satisfied, but ours is not. Consider 3 voters with the following
preference orderings:

(1) x1 � x2 ≈ x3, (2) x2 � x3 ≈ x1, (3) x3 � x1 ≈ x2.

Our assumption has the possible advantage of being slightly easier to verify than Sen’s.
Verifying whether the number of voters who are not indifferent over a pair of candidates
is odd is simpler than verifying whether the number who are not entirely indifferent over a
triple of candidates (in the sense of holding the preference ordering x1 ≈ x2 ≈ x3) is odd.

Given that the number of voters that are not indifferent about any particular pair of candi-
dates is odd, there will not be any ties under majority voting, and, as before, the only two
logically possible cycles are x1 � x2 � x3 � x1 and x1 � x3 � x2 � x1. The first cycle
corresponds to the following inequalities:

x1 � x2 means s12 > s21, i.e.

a123 + a132 + a312 + a1≈3�2 + a1�2≈3 > a213 + a231 + a321 + a2≈3�1 + a2�1≈3. (1)

x2 � x3 means s23 > s32, i.e.

a123 + a213 + a231 + a1≈2�3 + a2�1≈3 > a132 + a312 + a321 + a1≈3�2 + a3�1≈2. (2)

x3 � x1 means s31 > s13, i.e.

a231 + a312 + a321 + a2≈3�1 + a3�1≈2 > a123 + a132 + a213 + a1≈2�3 + a1�2≈3. (3)
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Adding pairs of these inequalities leads to:

(1) + (2) implies a123 + a1≈2�3 + a1�2≈3 > a321 + a2≈3�1 + a3�1≈2,

(1) + (3) implies a312 + a1≈3�2 + a3�1≈2 > a213 + a1≈2�3 + a2�1≈3,

(2) + (3) implies a231 + a2≈3�1 + a2�1≈3 > a132 + a1≈3�2 + a1�2≈3.

Analogously, the second cycle implies the reverse inequalities. Using (a version of)
Lemma 4 as before, we can state the following theorem:

Theorem 3 Suppose, for every triple of distinct candidates x1, x2, x3, we have (a123 +
a1≈2�3 +a1�2≈3 = 0 or a312 +a1≈3�2 +a3�1≈2 = 0 or a231 +a2≈3�1 +a2�1≈3 = 0) and
(a321 +a2≈3�1+a3�1≈2 = 0 or a213 +a1≈2�3+a2�1≈3 = 0 or a132 +a1≈3�2+a1�2≈3 =
0). Then pairwise majority voting generates a transitive (hence acylic) majority preference
ordering.

To see that the condition of Theorem 3 is equivalent to Sen’s condition of triplewise value-
restriction, we just need to use the interpretation, in the case of indifference, that each
candidate can have more than one rank within a voter’s preference ordering, i.e. if xh ≈
xi � x j , then xh and xi would each be regarded as both first and second within the given
preference ordering among xh , xi , x j . Using this interpretation and stating the condition
of Theorem 3 in a form similar to Table 1 then yields a version of Sen’s general result.

5 A necessary and sufficient condition for avoiding cycles
As we have pointed out, triplewise value-restriction is a sufficient condition for avoiding
cycles. It is a generalization of its precursors, which are themselves sufficient conditions.
But it is still not a necessary and sufficient condition. Can triplewise value-restriction itself
be further generalized? How ‘close’ is it to a necessary and sufficient condition? We will
now see that there is still some logical space between Sen’s condition and a necessary and
sufficient condition, but we suggest that this space may be too narrow to allow an appealing
generalization of triplewise value-restriction.

We first state a necessary and sufficient condition for the occurrence of cycles. The result
is a version of a result by Miller [3].

Theorem 4 Pairwise majority voting generates a cycle if and only if, for some triple of
distinct candidates x1, x2, x3, we have ((a123 > a321 and a312 > a213 and a231 > a132) or
(a321 > a123 and a213 > a312 and a132 > a231)) and |a123−a321| < n′

2 and |a231−a132| <
n′
2 and |a312 − a213| < n′

2 , where n′ := |a123 − a321| + |a231 − a132| + |a312 − a213|.
A proof is given in an appendix. Negating both sides of the if-and-only-if equivalence
yields the following corollary of Theorem 4:

Corollary Pairwise majority voting generates a transitive (hence acylic) majority pref-
erence ordering if and only if, for every triple of distinct candidates x1, x2, x3, we have
((a123 ≤ a321 or a312 ≤ a213 or a231 ≤ a132) and (a321 ≤ a123 or a213 ≤ a312 or
a132 ≤ a231)) or |a123 − a321| ≥ n′

2 or |a231 − a132| ≥ n′
2 or |a312 − a213| ≥ n′

2 , where
n′ := |a123 − a321| + |a231 − a132| + |a312 − a213|.



54 C. Elsholtz and C. List

Sen’s condition implies, but is not implied by, the condition of the corollary of Theorem 4.
However, to see why it may nonetheless be impossible to find an appealing generalization
of Sen’s condition, let us introduce a criterion for describing a condition on a profile as
simple. A condition (on a profile) is simple if it is dependent, for each logically possible
preference ordering, only on whether or not that ordering occurs in the profile, but not on
the number of voters holding the given ordering. Thus a condition is simple if it consists
only of propositions of the forms ahi j = 0 and ahi j 	= 0, as well as conjunctions or dis-
junctions of such propositions. The condition of triplewise value-restriction as defined in
Section 2 satisfies the criterion of simplicity (leaving aside the requirement that n be odd).
Technically, triplewise value-restriction in its full generality already violates the criterion,
as it requires the number of voters who are not indifferent about any particular triple (or
pair) of alternatives to be odd.
The task of finding a simple sufficient condition for the avoidance of cycles, then, is to find
a condition with the following two properties:

(i) the condition’s basic components are only propositions of the forms ahi j = 0 and
ahi j 	= 0;

(ii) the condition implies

((a123 ≤ a321 or a312 ≤ a213 or a231 ≤ a132)

and (a321 ≤ a123 or a213 ≤ a312 or a132 ≤ a231))

or |a123 − a321| ≥ n′

2
or |a231 − a132| ≥ n′

2
or |a312 − a213| ≥ n′

2
,

where n′ := |a123 − a321| + |a231 − a132| + |a312 − a213|.
Sen’s solution, namely (a123 = 0 or a312 = 0 or a231 = 0) and (a132 = 0 or a321 = 0 or
a213 = 0), seems to be the most general one we can get.

Appendix: Proof of Theorem 4
Step 1. Let x1, x2, x3 be any triple of candidates.

There is a majority cycle of type x1 � x2 � x3 � x1

⇔ (a123 + a132 + a312 > a213 + a231 + a321)

and (a123 + a213 + a231 > a132 + a312 + a321)

and (a231 + a312 + a321 > a123 + a132 + a213)

⇔ (a123 − a321 + a231 − a132 + a312 − a213 > 2(a231 − a132))

and (a123 − a321 + a231 − a132 + a312 − a213 > 2(a312 − a213))

and (a123 − a321 + a231 − a132 + a312 − a213 > 2(a123 − a321)).

Similarly,

there is a majority cycle of type x1 � x3 � x2 � x1

⇔ (a321 − a123 + a132 − a231 + a213 − a312 > 2(a132 − a231))

and (a321 − a123 + a132 − a231 + a213 − a312 > 2(a213 − a312))

and (a321 − a123 + a132 − a231 + a213 − a312 > 2(a321 − a123)).
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Step 2. Suppose there is some majority cycle. By Lemma 4, this implies that there is a cycle
over three candidates, say x1, x2, x3. The cycle must be of Type 1 (x1 � x2 � x3 � x1) or
of Type 2 (x1 � x3 � x2 � x1). As we have seen in Section 2, a cycle of Type 1 implies
(a123 > a321 and a312 > a213 and a231 > a132). By Step 1, we then also have

(|a123 − a321| + |a231 − a132| + |a312 − a213| > 2|a231 − a132|)
and (|a123 − a321| + |a231 − a132| + |a312 − a213| > 2|a312 − a213|)
and (|a123 − a321| + |a231 − a132| + |a312 − a213| > 2|a123 − a321|).

Also, as we have seen in Section 2, a cycle of Type 2 implies (a321 > a123 and a213 > a312
and a132 > a231). By Step 1, we then also have

(|a123 − a321| + |a231 − a132| + |a312 − a213| > 2|a231 − a132|)
and (|a123 − a321| + |a231 − a132| + |a312 − a213| > 2|a312 − a213|)
and (|a123 − a321| + |a231 − a132| + |a312 − a213| > 2|a123 − a321|).

Recall that n′ = |a123 − a321| + |a231 − a132| + |a312 − a213|. Hence a majority cycle
implies the following condition:

((a123 > a321 and a312 > a213 and a231 > a132)

or (a321 > a123 and a213 > a312 and a132 > a231))

and |a123 − a321| <
n′

2
and |a231 − a132| <

n′

2
and |a312 − a213| <

n′

2
.

(∗)

Suppose, conversely, there exists a triple of candidates, x1, x2, x3, such that (∗) holds. We
must have either (a123 > a321 and a312 > a213 and a231 > a132) or (a321 > a123 and
a213 > a312 and a132 > a231). If (a123 > a321 and a312 > a213 and a231 > a132), we have

(a123 − a321 + a231 − a132 + a312 − a213 > 2(a231 − a132))

and (a123 − a321 + a231 − a132 + a312 − a213 > 2(a312 − a213))

and (a123 − a321 + a231 − a132 + a312 − a213 > 2(a123 − a321)),

which implies a majority cycle of Type 1, by Step 1.

If (a321 > a123 and a213 > a312 and a132 > a231), we have

(a321 − a123 + a132 − a231 + a213 − a312 > 2(a132 − a231))

and (a321 − a123 + a132 − a231 + a213 − a312 > 2(a213 − a312))

and (a321 − a123 + a132 − a231 + a213 − a312 > 2(a321 − a123)),

which implies a majority cycle of Type 2, by Step 1.
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