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1 Introduction
Let n, k be integers such that n ≥ 3, 1 ≤ k ≤ n − 1, k is relatively prime to n. Let R be a
counter-clockwise rotation about the point O by k(360◦/n). The images of the point P

Q0 = R0(P), Q1 = R1(P), . . . , Qn−1 = Rn−1(P)

are on one circle and divide the circle into n equal arcs. The directed straight line segments
−−−→
Q0 Q1,

−−−→
Q1 Q2, . . . ,

−−−−−−−→
Qn−2 Qn−1,

−−−−−→
Qn−1 Q0

are the sides of a regular (n, k)-gon (see Fig. 1). The regular (n, 1)-gon is an ordinary
regular n-gon with directed sides. The regular (n, n − 1)-gon is the same ordinary regular
n-gon, only the orientation of the sides are the opposite.

For 2 ≤ k ≤ n − 2 a regular (n, k)-gon is a star polygon. An affine regular (n, k)-gon
is an affine image of a regular (n, k)-gon (see Fig. 2). We will show that three results on
triangles extend to affine regular polygons.

.

Drei nicht notwendigerweise gleich grosse gleichseitige Dreiecke mit einem gemeinsa-
men Eckpunkt heissen in Propelleranordnung. Verbindet man benachbarte, freie Ecken
und bestimmt die Mittelpunkte der Verbindungsstrecken, so bilden diese Mitten ein
gleichseitiges Dreieck. Diesen Propellersatz über Dreiecke verallgemeinert der Autor,
indem er die gleichseitigen Dreiecke durch affine Bilder regulärer n-Ecke, die auch die
Form eines Sternvielecks haben dürfen, ersetzt. Die Beweismethode beruht auf mehrfa-
cher Anwendung von Rotationen, die mit der affinen Abbildung kommutieren, und auf
geschickter Anwendung trigonometrischer Beziehungen. Ausserdem werden in dieser
Arbeit der altbekannte Satz von Napoleon und der Satz von den Transversalen, die
beide für Dreiecke gelten, mit ähnlichen Methoden auf affine Vielecke erweitert.
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2 The propeller theorem
L. Bankoff, P. Erdös, and M. Klamkin [1] proved the following result what they called
the propeller theorem. Rotate a triangle about an arbitrarily chosen point by 60◦. Let
B0, B1, B2 be the vertices of the original triangle, let C0, C1, C2 be the vertices of the
rotated triangle and let f be the cyclic permutation[

0 1 2
2 0 1

]

of the indices 0, 1, 2. Then the midpoints D0, D1, D2 of the sections

B0C f (0), B1C f (1), B2C f (2)

are the vertices of a regular triangle. The propeller theorem is a special case of the follow-
ing theorem.
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Theorem 1. Rotate an affine regular (n, k)-gon about a point by k(n − 2)(180◦/n).
Let B0, B1, . . . , Bn−1 be the vertices of the original affine regular (n, k)-gon, let
C0, C1, . . . , Cn−1 be the vertices of the rotated (n, k)-gon and let f be the cyclic per-
mutation [

0 1 2 . . . n − 2 n − 1
n − 1 0 1 . . . n − 3 n − 2

]

of the indices 0, 1, . . . , n − 1. Then the midpoints D0, D1, . . . , Dn−1 of the sections

B0C f (0), B1C f (1), . . . , Bn−1C f (n−1)

are the vertices of a regular (n, k)-gon.

As a triangle is always an affine regular 3-gon Theorem 1 implies the propeller theorem.
An affine regular 4-gon is a parallelogram so Theorem 1 is about rotating a parallelogram
by 90◦.

Proof . Let R be a rotation about the origin of the coordinate system by k(180◦/n) and let
u be a vector. Clearly R0u, R2u, . . . , R2(n−1)u are the vertices

A0, A1, . . . , An−1

of a regular (n, k)-gon. If S is an affine transformation, then

S R0u + b, S R2u + b, . . . , S R2(n−1)u + b

are the vertices B0, B1, . . . , Bn−1 of an affine regular (n, k)-gon. Furthermore,

Rn−2S R0u + Rn−2b,

Rn−2S R2u + Rn−2b,

...

Rn−2S R2(n−1)u + Rn−2b

are the vertices C0, C1, . . . , Cn−1 of the rotated copy of the (n, k)-gon B0 B1 . . . Bn−1. The
midpoints D0, D1, . . . , Dn−1 of the sections

B0C f (0), B1C f (1), . . . , Bn−1C f (n−1)

can be expressed in the following way:

1

2
[S R0u + b + Rn−2 S R2(n−1)u + Rn−2b],

1

2
[S R2u + b + Rn−2 S R0u + Rn−2b],

1

2
[S R4u + b + Rn−2 S R2u + Rn−2b],

...
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1

2
[S R2(n−2)u + b + Rn−2 S R2(n−3)u + Rn−2b],

1

2
[S R2(n−1)u + b + Rn−2 S R2(n−2)u + Rn−2b].

We want to show that

R2(
−−−→
D0 D1) = −−−→

D1 D2,

R2(
−−−→
D1 D2) = −−−→

D2 D3,

...

R2(
−−−−−→
Dn−1 D0) = −−−→

D0 D1.

It is enough to verify that

R2S R0 + R2 Rn−2 S R2(n−1) = S R2 + Rn−2 S R0,

R2S R2 + R2 Rn−2 S R0 = S R4 + Rn−2 S R2,

R2S R4 + R2 Rn−2 S R2 = S R6 + Rn−2 S R4,

...

R2 S R2(n−2) + R2 Rn−2 S R2(n−3) = S R2(n−1) + Rn−2 S R2(n−2),

R2 S R2(n−1) + R2 Rn−2 S R2(n−2) = S R0 + Rn−2 S R2(n−1).

Any of these equations is equivalent to

R2S + S Rn−2 = S R2 + Rn−2S. (1)

We prove this for the first and the last equations separately and for the remaining ones
together. In the case of the first equation we get (1) in the following steps

R2S + R2 Rn−2S R2(n−1) = S R2 + Rn−2S,

R2S + Rn S Rn+n−2 = S R2 + Rn−2S,

using that Rn = −I . For the last equation

R2S R2(n−1) + R2 Rn−2S R2(n−2) = S R0 + Rn−2S R2(n−1),

−R2S Rn−2 + S Rn−4 = S − Rn−2 S Rn−2.

After multiplying by R2 from the right we get (1). For the remaining equations

R2S R2i + R2 Rn−2S R2(i−1) = S R2(i+1) + Rn−2S R2i ,

where 1 ≤ i ≤ n − 2,

R2S R2i − S R2i−2 = S R2i+2 + Rn−2 S R2i .

Multiplying by Rn−2i from the right we get (1).
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So it remains to verify that (1) holds. For 0 ≤ t ≤ 1 the affine transformation T with the
matrix [

1 0
0 t

]
(2)

shrinks the plane in the direction of the second coordinate axis. The image of a circle is
an ellipse. We can get every possible shape of ellipses with a suitable choice of t . Con-
sider now a regular n-gon together with the circle passing through the vertices. Applying
first a rotation W to the regular n-gon then T we can get every possible shape of affine
regular n-gons with a suitable choice of W and T . In short, we may represent the affine
transformation S in the form T W . Using the fact that W and R commute the equation

R2T W + T W Rn−2 = T W R2 + Rn−2T W

is equivalent to
R2T + T Rn−2 = T R2 + Rn−2T . (3)

The matrices of R2, Rn−2 are[
cos α − sin α

sin α cos α

]
,

[
cos β − sin β

sin β cos β

]
,

respectively, where α = 2k(180◦/n), β = (n − 2)k(180◦/n). Using these matrices and
sin α = sin β it is a routine computation to verify that (3) holds. �

3 The Napoleon theorem
Consider a triangle with vertices B0, B1, B2. Construct the triangles B0 B1 B ′

0, B1 B2 B ′
1,

B2 B0 B ′
2 such that they are regular and all are outside of the B0 B1 B2 triangle. Then

the centroids C0, C1, C2 of the constructed triangles are vertices of a regular triangle. This
result is known as Napoleon’s theorem. Napoleon’s theorem is a special case of the next
theorem.

Theorem 2. Consider an affine regular n-gon � with vertices B0, B1, . . . , Bn−1. Erect
regular n-gons on each side of � such that all these are outside of �. Then the centroids
C0, C1, . . . , Cn−1 of these regular n-gons are the vertices of a regular n-gon.

A triangle is always an affine regular triangle, so Theorem 2 is a generalization of Napo-
leon’s theorem. An affine regular 4-gon is a parallelogram and a regular 4-gon is a square.
So Theorem 2 is about erecting squares on the sides of a parallelogram.

Proof . If R is a rotation about the origin O by 90◦/n, S is an affine map and u is a vector,
then

S R0u, S R4u, S R8u, . . . , S R4(n−2)u, S R4(n−1)u

are the vertices B0, B1, . . . , Bn−1 of an affine regular n-gon �.

Rotating B0 B1 about B0 by

360◦ −
(

90◦ − 180◦

n

)
= [4n − (n − 2)]

(90◦

n

)
= (3n + 2)

(90◦

n

)
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and multiplying it by

λ = 1

2 sin[2(90◦/n)]
we get the centroid of the regular n-gon erected on the side B0 B1 (see Fig. 3).

D

C

0

0

B
1

0
B

180 n/

Fig. 3

Therefore the centroids C0, C1, . . . , Cn−1 of the erected regular n-gons are

S R0u + λR3n+2[S R4 − S R0]u,

S R4u + λR3n+2[S R8 − S R4]u,

S R8u + λR3n+2[S R12 − S R8]u,

...

S R4(n−2)u + λR3n+2[S R4(n−1) − S R4(n−2)]u,

S R4(n−1)u + λR3n+2[S R0 − S R4(n−1)]u.

After setting V = S + λR3n+2 S[R4 − I ] we get that C0, C1, . . . , Cn−1 are

V R0u, V R4u, . . . , V R4(n−1)u.

We want to show that

R4(
−−→
O B0) = −−→

OC1,

R4(
−−→
O B1) = −−→

OC2,

...

R4(
−−−−→
O Bn−2) = −−−−→

OCn−1,

R4(
−−−−→
O Bn−1) = −−→

OC0.
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It is enough to check that

R4V R0 = V R4,

R4V R4 = V R8,

...

R4V R4(n−2) = V R4(n−1),

R4V R4(n−1) = V R0.

Any of these equations is equivalent to R4V = V R4. As in the proof of Theorem 1 we may
represent the affine transformation S in the form T W , where T is an affine transformation
with a matrix (2) and W is a rotation. In the equation R4V = V R4 the transformation V
can be reduced to

V = T + λR3n+2T [R4 − I ]
as W commutes with rotations. Let the matrices of V , R3n+2, R4 be

[
a b
c d

]
,

[
cos β − sin β

sin β cos β

]
,

[
cos γ − sin γ

sin γ cos γ

]
,

respectively. Here

γ = 4
(90◦

n

)
, β = (3n + 2)

(90◦

n

)
,

γ = 2α, β = 3 · 90◦ + α.

A routine computation shows that R4V = V R4 is equivalent to a = d and b = −c;
furthermore

a = λ cos β(cos γ − 1) − λt sin β sin γ + 1,

b = −λ cos β sin γ − λt sin β(cos γ − 1),

c = λ sin β(cos γ − 1) + λt cos β sin γ,

d = −λ sin β sin γ + λt cos β(cos γ − 1) + t .

The expressions for a, b, c, d are linear polynomials in t . Equating the like terms we have

λ cos β(cos γ − 1) + 1 = −λ sin β sin γ, (4)

−λt sin β sin γ = λt cos β(cos γ − 1) + t, (5)

λ sin β(cos γ − 1) = λ cos β sin γ, (6)

λt cos β sin γ = λt sin β(cos γ − 1). (7)

Clearly, it is enough to verify (4) and (6). Using

sin β = − cos α, cos β = sin α, λ = 1/(2 sin α),

we can verify readily that (4) and (6) hold. �
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4 A transversal theorem
Erect regular triangles B0 B1 B ′

0, B1 B2 B ′
1, B2 B0 B ′

2 on the sides of a given B0 B1 B2 triangle
such that the new triangles are all outside of the old one. Then the straight line segments
B ′

0 B2, B ′
1 B0, B ′

2 B1 have the same lengths. The next theorem is a generalization of this
result.

Theorem 3. Consider an affine regular n-gon � with vertices B0, B1, . . . , Bn−1. Erect
regular n-gons �0, �1 on the sides B0 B1, B1 B2 of � such that both �0 and �1 are
outside of �. If n is odd, then the distances of the vertices of �0, � and �1, � opposite
to the sides B0 B1 and B1 B2 are equal. If n is even, then the distances of the midpoints of
the edges of �0, � and �1, � opposite to the sides B0 B1 and B1 B2 are equal.

Proof . Let R be a rotation about the origin O by 90◦/n, S an affine map, u a vector.
Then S R0u, S R4u, . . . , S R4(n−1)u are the vertices B0, B1, . . . , Bn−1 of an affine regular
n-gon �.

Let us first deal with the n = 2k + 1 case. Rotating
−−−→
B0 B1 about B0 by

360◦ −
(

90◦ − 90◦

n

)
= (3n + 1)

(90◦

n

)

and multiplying it by

λ = 1

2 sin(90◦/n)

we get the vertex D0 of �0 opposite to the B0 B1 side (see Fig. 4).

D0

B B1
2

90 /n

180 /n

Fig. 4

Similarly rotating
−−−→
B1 B2 about B1 by (3n + 1)(90◦/n) and multiplying it by λ we get the

vertex D1 of �1 opposite to the B1 B2 side. As n = 2k + 1, the vertices Bk+1, Bk+2 are
the vertices of � opposite to the sides B0 B1, B1 B2, respectively. The vertices D0, D1 are

S R0u + λR3n+1[S R4u − S R0u],
S R4u + λR3n+1[S R8u − S R4u].
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We want to show that R4(
−−−−→
Bk+1 D0) = −−−−→

Bk+2 D1. Set

V = S + λR3n+1S[R4 − I ] − S R4(k+1)

= S[I − R4(k+1)] + λR3n+1 S[R4 − I ].
It is enough to verify that R4V = V R4. The affine map S can be written in the form
S = T W , where W is a rotation and T is an affine map with a matrix (2). As rotations
commute, V can be reduced to

V = T [I − R4(k+1)] + λR3n+1T [R4 − I ].
Let the matrices of R4(k+1), R3n+1, R4, V be[

cos δ − sin δ

sin δ cos δ

]
,

[
cos β − sin β

sin β cos β

]
,

[
cos γ − sin γ

sin γ cos γ

]
,

[
a b
c d

]
,

respectively. Here

δ = 4(k + 1)
(90◦

n

)
= 180◦ + 2

(90◦

n

)
= 180◦ + 2α,

β = (3n + 1)
(90◦

n

)
= 3 · 90◦ +

(90◦

n

)
= 270◦ + α,

γ = 4
(90◦

n

)
= 4α.

We can see that R4V = V R4 is equivalent to a = d and b = −c; furthermore

a = λ cos β(cos γ − 1) − λt sin β sin γ + 1 − cos δ,

b = −λ cos β sin γ − λt sin β(cos γ − 1) + sin δ,

c = λ sin β(cos γ − 1) + λt cos β sin γ − t sin δ,

d = −λ sin β sin γ + λt cos β(cos γ − 1) + t − t cos δ.

The expressions for a, b, c, d are linear polynomials in t . Equating the like terms we have

λ cos β(cos γ + 1) − cos δ + 1 = −λ sin β sin γ, (8)

−λt sin β sin γ = λt cos β(cos γ − 1) + t − t cos δ, (9)

λ sin β(cos γ − 1) = λ cos β sin γ − sin δ, (10)

λt cos β sin γ − t sin δ = λt sin β(cos γ − 1). (11)

Clearly it is enough to verify (8) and (10). Note that

sin β = − cos α, cos β = sin α,

sin δ = − sin 2α, cos δ = − cos 2α,

λ = 1/(2 sin α).
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Substituting these into (8) and (10) we can verify that (8) and (10) hold.

Let us turn to the n = 2k case. Rotating
−−−→
B0 B1 about B0 by

360◦ − 90◦ = (3n)
(90◦

n

)
,

multiplying it by

λ = cos
(
2(90◦/n)

)
sin

(
2(90◦/n)

)

and adding (1/2)
−−−→
B0B1 = u0 we get D0, the midpoint of the side of �0 opposite to B0 B1

(see Fig. 5).

D0

B B
1 2

180 /n

Fig. 5

Similarly, rotating
−−−→
B1 B2 about B1 by (3n)(90◦/n), multiplying it by λ and adding

(1/2)
−−−→
B1B2 = u1 we get D1, the midpoint of the side of �1 opposite to B1 B2. The vertices

D0, D1 are

S R0u + λR3n[S R4u − S R0u] + u0,

S R4u + λR3n[S R8u − S R4u] + u1.

The midpoints E0, E1 of the sides of � opposite to B0 B1 and B1 B2 are Bk+1 + u0 and
Bk+2 + u1, respectively. We want to show that R4(

−−−→
E0 D0) = −−−→

E1 D1. Set

V = S + λR3n S[R4 − I ] − S R4(k+1)

= S[I − R4(k+1)] + λR3n S[R4 − I ].

We have to verify that R4V = V R4. We can represent S in the form S = T W , where W
is a rotation and T has matrix (2). Now V reduces to T [I − R4(k+1)] + λR3n T [R4 − I ].
The equations we have to verify are the same as earlier. Note that

δ = 4(k + 1)(90◦/n) = 180◦ + 4(90◦/n) = 180◦ + 2α,
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where
α = 2(90◦/n), β = (3n)(90◦/n) = 270◦,

γ = 4(90◦/n) = 2α, λ = cos 2
(
(90◦/n)

)
sin 2

(
(90◦/n)

) = cos α

sin α
.

Using
sin δ = − sin(2α), cos δ = − cos(2α)

we can verify the desired equations. �
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