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Ernst Specker (2002, Aufgabe 1184) asked:

Nach einem Orakelspruch sollte die Pest in Griechenland dann zu Ende gehen, wenn der
würfelförmige Altar im Apollonheiligtum auf Delos verdoppelt werde. Nach traditioneller
Interpretation verlangt der Spruch die (unmögliche) Konstruktion der Kante des neuen
Altars mit Zirkel und Lineal. Bei Ausgrabungen auf Delos soll nun aber ein Granitquader,
dessen Kanten sich wie 2 : 1 : 1 verhalten, gefunden worden sein. Damit drängt sich eine

Fig. 0.1 Granite cuboid found on Delos

.

Die Würfelverdoppelung gehört zu den klassischen Problemen der antiken Geometrie.
Die Unmöglichkeit einer konstruktiven Lösung mit Zirkel und Lineal wurde erst im
19. Jahrhundert gezeigt. Allerdings existieren Lösungen mit anderen Hilfsmitteln, wie
etwa durch

”
paper folding“. In diesem Artikel wird eine Lösung vorgeschlagen, bei

welcher ein 2 × 1 × 1-Quader in sieben polyedrische Teile zerlegt wird, die zu einem
Würfel zusammengesetzt werden können. Es wird auch gezeigt, dass die Lösung durch
eine Doppelkachelung des Raumes erzeugt werden kann.
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neue Deutung des Orakelspruchs auf: Ein Quader vom Typus 2 : 1 : 1 ist so (in endlich
viele Polyeder) zu zerlegen, dass sich aus den Teilen ein Würfel bilden lässt. Gibt es eine
solche Zerlegung?

Wenn ja, gebe man eine

– leicht zu realisierende Zerlegung für Steinmetze und Puzzlefreunde an.

– Zerlegung mit einer (möglichst) kleinen Anzahl von Stücken an.1

The question of equidecomposable polyhedra is a very old one: Already in ancient Greek
mathematics, the areas of triangles and parallelograms had been determined by dissection
of the figures. In principle already the ancient Greek mathematicians could have proved,
using only Euclid’s methods (and the Archimedean axiom to be precise), that any two
polygons (plane polyhedra) have the same area if and only if they can be cut into the same
set of finitely many polygonal pieces. We will come back to this remarkable fact later on.
Specker’s challenge is about the corresponding problem in space. In 1844, in two letters to
Gerling, Gauß was wondering that, in order to prove that two mirror symmetric tetrahedra
have the same volume, it seemed necessary to use the method of exhaustion. After Gerling
found a satisfactory answer to this question, Gauß pointed out to Gerling that exhaustion,
which means dissection into infinitely many pieces, is also needed for other theorems of
stereometry like Euclid XII.5, where it is shown that the volumes of two pyramids of the
same height have the same ratio as the area of their bases. Hilbert, in his famous talk at
the 1900 International Congress of Mathematics in Paris, took up this phenomenon and
asked in his third problem to find two tetrahedra of same base and height that are not
equidecomposable. Only a few months later, Max Dehn (1900) answered the question by
defining a quantity which remains invariant under dissection, yet has different values for
a cube and a regular tetrahedron. More details follow but first we turn back to Specker’s
original problem.

1 An elementary approach

A person who is inexperienced in dissection problems risks taking the bait and trying
to dissect the altar, i.e., the 2 × 1 × 1-cuboid, by cuts that are parallel to its axes, and
then reassembling the pieces to form the cube. How could this be achieved? First we cut a
1×1×1-cube, then three slices 1×1×(

3
√

2−1). This yields a cube with three pasted slices
such that three edges already have the correct length, see Fig. 1.1. To complete the cube we
would still need three beams 1× (

3
√

2−1)× (
3
√

2−1) and a cube with side-length 3
√

2−1.

1According to an oracle the pest in Greece would come to an end when the cubic altar in Apollo’s sanctuary
on Delos was doubled. In the traditional interpretation the verdict asked for the (impossible) construction of the
edge of the new altar with ruler and compass. From excavations on Delos it rumoured that a granite cuboid was
found whose edge proportions are 2:1:1. This leads to a new interpretation of the oracle’s spell: A cuboid of
type 2:1:1 has to be dissected (into finitely many polyhedra) such that the pieces can form a cube. Does such a
dissection exist?

If so give a
– easily realizable dissection for stonemasons and puzzle friends.
– dissection with as few pieces as possible.



Delian Metamorphoses 3

The leftover of the altar is a slightly thinner piece of size 1 × 1 × (4 − 3 3
√

2). From this
piece we cut three beams of height 3

√
2−1 and then four slices 1×(4 3

√
2−5)×(4−3 3

√
2).

From the fourth of these slices we cut three rods with square cross section. These pieces
can be put together to obtain the three needed beams 1 × (

3
√

2 − 1) × (
3
√

2 − 1). There
remains a beam 1 × (4 − 3 3

√
2) × (24 − 19 3

√
2) and a rod 1 × (19 − 15 3

√
2) × (5 − 4 3

√
2)

which have to be dissected into the missing cube of side-length 3
√

2 − 1. And so on. . .

Fig. 1.1 3√2 − 1 ≈ 0.2599, 4 − 3 3√2 ≈ 0.2202

At this point, the reader will suspect that this method will not terminate. Indeed, all side-
lengths that occur up to now are of the form a + b 3

√
2 with integers a and b. Since 3

√
2

is irrational, we may presume that no such finite dissection of altar and cube exists. Of
course, seemingly unmotivated cuts may destroy the side-length pattern observed so far
and this argument falls apart. Anyhow, the reader might still be convinced that no finite
common dissection of altar and cube into cuboids exists. However, cuts in other directions
could still lead to the desired result. We just did not try it yet because it seems much more
difficult to visualize. So we first go back into two dimensions and consider the analogous
problem of dissecting a square into a rectangle. Here the answer turns out to be surprisingly
simple.

Fig. 1.2 Dissection of a 3√2-square into a 3√4 × 1-rectangle

Starting with a rectangle we cut off a triangle, like in Fig. 1.2, and move it to the oppo-
site side which results in a parallelogram. From this figure we come back to a different
rectangle by a similar operation: the triangle on the left is shifted to the right. These two
steps lead from one rectangle to another rectangle. The method is quite flexible, we can
choose the height of the new rectangle by adjusting the slope of the first cut. Even if the
slope is getting too steep, as in Fig. 1.3, we can still cyclically continue to cut and arrive at
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a rectangle whose height is the distance of the top left corner of the original rectangle to
the line given by the first cut. In general, there will be more than just three pieces, but the
method allows us to dissect any rectangle into a rectangle of equal area and height 1. This
generalizes easily to the following famous theorem.

Fig. 1.3 Dissection of a rectangle into a narrow one

Theorem 1.1 (Wallace (1831); Lowry (1814); Bolyai (1832); Gerwien (1833)). Two
polygons are equidecomposable if and only if they have the same area.

Two polyhedra P(1) and P(2) are called equidecomposable or scissors congruent if both
allow a finite, almost disjoint decomposition P(i) = ⋃n

j=1 P(i)
j such that P(1)

j and P(2)
j

are congruent polyhedra. (“Almost disjoint” means that the interiors of P(i)
j1

and P(i)
j2

are
disjoint for all i , j1, j2.)

It is trivial that equidecomposable polyhedra have equal volume. The surprising inverse
implication in two dimensions stated in the theorem was proved by Bolyai (1832) and Ger-
wien (1833) independently. In fact, it is quite likely that Wallace had proved the theorem
already in 1808. The problem he posed was explicitly solved by Lowry (1814). Wallace’s
own extended solution was published in Wallace (1831). The proof is amazingly simple:
because equidecomposability is an equivalence relation it suffices to dissect any polygon
into a rectangle of height 1. Since every polygon possesses a triangulation, and hence can
be dissected into triangles, and since, as we have seen, all rectangles of equal area are
equidecomposable, we are left with the problem of showing that every triangle can be dis-
sected into a rectangle. This is easy, as indicated in Fig. 1.4. Theorem 1.1 remains valid in
two-dimensional hyperbolic and elliptic geometry.

Fig. 1.4 Dissection of a triangle into a rectangle
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After the preparatory work in two dimensions the transfer to three dimensions is easily
accomplished. A dissection of two rectangles yields a dissection of two cuboids if we just
apply the plane pattern to a face of a cuboid and cut it like a pie orthogonal to the face. By
performing this operation twice with respect to two adjacent faces of a given cuboid C we
obtain a common dissection of three cuboids, and we may consider the given cuboid C as
an intermediate step between the two resulting cuboids. In Fig. 1.6 a 3

√
4 × 3

√
2 × 1-cuboid

is dissected by applying two plane patterns: the front is dissected using the pattern from
Fig. 1.2, and to the top the pattern on the left of Fig. 1.5 is applied. Thus, the resulting
pieces can be reassembled to form both the cube and the altar! The resulting description
for stone masons and puzzle friends might therefore read as follows.

Fig. 1.5 Dissection of a 3√4 × 3√2-rectangle into a 2 × 1-rectangle

1

3 2

3 4

Fig. 1.6 Intermediate 3√4 × 3√2 × 1-cuboid

Answer 1.2. Apply the dissection on the right of Fig. 1.5 to the altar, cut accordingly
and reassemble the pieces as indicated on the left of Fig. 1.5. Continue by applying the
dissection on the right of Fig. 1.2 as in the front of Fig. 1.6, cut again and reassemble the
pieces according to the dissection on the left of Fig. 1.2. Done!

What we found is a solution with no more than nine pieces which relies on the common
dissection of two rectangles into three pieces.

Let us take a closer look at the dissection we found. A direct inspection reveals immedi-
ately that one of the nine pieces is empty. Indeed, Fig. 1.7 shows that the left prism induced
by the top dissection does not meet the right prism induced by the front dissection.
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Fig. 1.7 Disjoint prisms Fig. 1.8 The critical pieces in the 8-piece
solution.

At this point, the second author produced several Maple animations. In one of them, the
pieces move from their position in the altar straight to their position in the cube. Of course
the pieces interpenetrate on their way from one position to the other. Nevertheless, we can
learn something: it looks as if two of the remaining eight pieces move simultaneously and
could therefore be glued together to form one single piece. The two pieces concerned are
the ones that build the right and the left face of the cuboid in Fig. 1.6. If we could glue
these two slices we would have a dissection with only seven pieces. We could, however, in
that case no longer build the intermediate 3

√
4 × 3

√
2 × 1-cuboid, but that would not hurt.

Another observation originated from the Maple animations, namely that almost all faces of
the eight pieces are once on the inside and once on the outside of the altar or the cube. The
only faces that are twice inside are precisely the faces we just intended to glue together.
A closer inspection unfortunately showed that the two pieces we have in mind actually
do slide relative to each other but only a very small distance that corresponds exactly to
their difference in size, i.e., the length of the shortest edge in the quadrilateral in Fig. 1.5.
(There is a quadrilateral!) Being so close to a solution with only seven pieces it seemed
reasonable to ask if there might be, nonetheless, a solution with seven pieces only. At this
point another piece comes into play, namely the piece which is located once on one side
and once on the other side of the gliding piece, and which compensates exactly the small
distance by which the two original pieces move relative to each other, see Fig. 1.8. Let us
try to cut off a slice of one piece and glue it to the other one. Then the displacement should
no longer be necessary and we could glue the two pieces. And indeed, this plan works!

Theorem 1.3. There exists a common dissection of altar and cube with seven pieces. �

Fig. 1.9 shows how the seven pieces build up the altar and the cube, respectively. The web
page Nüsken (2003) offers an animation illustrating the solution.

The solution in Fig. 1.9 reveals a wonderful and surprising property, namely:

Observation 1.4. If we consider the faces of the seven pieces, once if they form the cube
and once if they form the altar, then each face is one time on the inside and the other
time on the outside. None of the faces is in both configurations hidden inside or in both
configurations visible on the surface.

Note further that the seven pieces in our solution only need to be displaced by translations,
provided the cube and the altar have a suitable orientation relative to each other. In this
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Fig. 1.9 Dissection of altar and cube with seven pieces

orientation, cube and altar have no parallel faces. It is therefore impossible that a face of
one of the pieces is in both cases on the outside. Since we can move the pieces from one
body to the other without rotating them, the dissection is called translational.

Hadwiger & Glur (1951) have shown that two arbitrary plane polygons having equal area
are equidecomposable even if only translations and point symmetries are allowed for the
conversion. After the considerations we made earlier for plane polygons, we can almost
prove this result: in addition, we would only need to show that one can turn a triangle or a
rectangle by using only the means allowed. This is actually impossible using translations
alone, as the following characterization shows:

Theorem 1.5 (Hadwiger & Glur (1951)). Two polygons P and Q of equal area are
translation equidecomposable if and only if the functions �P and �Q agree.

Here, for a unit vector v in the plane, �P (v) is defined to be the sum of the oriented lengths
of those edges of P that are perpendicular to v. In this sum the length counts positive if v

is an outer normal vector and negative in the opposite case. �

For a rectangle R the function �R vanishes identically, but for a triangle this is not the
case. Therefore, a rectangle and a triangle cannot be translationally equidecomposable, no
matter how they are oriented.

2 Dissection in space and the Dehn invariant
Let us come back to Hilbert’s third problem:

[. . . ] specifying two tetrahedra of equal bases and equal altitudes which can in
no way be split up into congruent tetrahedra, and which cannot be combined
with congruent tetrahedra to form two polyhedra which themselves could be
split up into congruent tetrahedra.
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Hilbert does not only consider the notion of equidecomposability but also polyhedra that
are equivalent by completion. Two polyhedra that are equidecomposable are trivially equi-
valent by completion. Surprisingly, the inverse implication is also true: for two dimensions,
this follows from Theorem 1.1. In higher dimensions, the issue becomes more subtle:
Sydler (1943/44) has shown the corresponding result in three dimensions and Hadwiger
(1952a) generalized it to arbitrary dimensions (and even arbitrary transformation groups
G which contain all translations). A complete proof is also provided in Hadwiger (1957,
2.2.1).
Max Dehn (1900) solved Hilbert’s third problem shortly after the congress. He was able
to show that a cube and a tetrahedron of the same volume are not equidecomposable. The
proof is meanwhile so simple that we can present its main features here: the decisive tool
is the Dehn invariant. Its crucial property is, as its name indicates, to be invariant under
dissection of a polyhedron into several pieces. In other words: two equidecomposable
polyhedra must have the same Dehn invariant. In order to compute the value of the Dehn
invariant of a given polyhedron P , one has to determine the length le ∈ R≥0 of every edge
e of P and the spherical angle αe ∈ R/πZ modulo π between the two faces adjacent to e.
In modern notation, the Dehn invariant takes values in the tensor product R ⊗Z R/πZ and
is given by

D(P) :=
∑

e edge
of P

le ⊗ αe ∈ R ⊗Z R/πZ .

The tensor property l ⊗ (α + β) = l ⊗ α + l ⊗ β reflects what happens if one cuts along
an edge, dissecting the angle between the faces into two angles α and β. Similarly, the
tensor property (l + m) ⊗ α = l ⊗ α + m ⊗ α corresponds to cutting an edge, dissecting
its length into two parts l and m. Measuring the angles modulo π allows one to introduce
new (first only virtual) edges with face angle π . Our cube has twelve edges of length 3

√
2

and all angles are π
2 . Hence, we have D(Cube) = 12 · ( 3

√
2 ⊗ π

2 ) = 3
√

2 ⊗ 6π = 0. On the
other hand, a regular tetrahedron of the same volume possesses six edges of equal length l
and all angles are α ≈ 70.5◦ with cos α = 1

3 . Hence, its Dehn invariant is given by 6l ⊗ α.
Now, 6l ⊗ α vanishes if and only if 6l = 0 or if α is a rational multiple of π . Dupont
(2001) gives the following nice argument which shows that α/π is irrational: it suffices
to verify that for every k ∈ N>0 the number 3k cos kα is an integer and not a multiple of
three. To see this we use the formula cos kα = 2 cos α · cos(k − 1)α − cos(k − 2)α. �The
assertion is obviously true for k = 1. Suppose k > 1. Then 3k cos kα = 2(3k−1 cos(k −
1)α)−9(3k−2 cos(k −2)α) and by induction we see immediately that this expression does
not vanish modulo 3.	 We conclude that

D(Tetrahedron) 
= 0 = D(Cube),

and hence the cube and the tetrahedron cannot be equidecomposable since their Dehn
invariants disagree. (Moreover, they cannot be equivalent by completion as Hilbert asked.)
Going back to our original task, let us determine the Dehn invariant of the altar: all its
angles are π

2 and hence D(Altar) = 1 ⊗ 8 · π
2 + 2 ⊗ 4 · π

2 = 1 ⊗ 8π = 0. Thus, the cube
and the altar have the same Dehn invariant. Surprisingly, the converse of Dehn’s result is
also true: if two three-dimensional polyhedra of equal volume have the same Dehn invari-
ant they are equidecomposable. Not until 25 years after Hopf pointed out this problem to
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his student, Sydler (1965) proved this theorem. Jessen (1968, 1972) and Dupont & Sah
(1990) later shortened the proof considerably. In addition, Jessen (1972) was able to show
that the analogous criterion holds in four dimensions for equidecomposable polytopes. In
higher dimensions however, and in hyperbolic and elliptic geometry in dimension three
and above, the problem remains open, Kellerhals (1999). For our original problem it fol-
lows from Sydler’s theorem that the cube and the altar are indeed equidecomposable (as
we know already). However, the theorem does not tell us what a common dissection looks
like, let alone one with a minimum number of pieces.

Before we continue we want to reveal that the conjecture that a common dissection of altar
and cube into finitely many cuboids does not exist is indeed correct. Spandaw (2002) or
Hadwiger (1957, 2.2.10, Korollar I), describe this in a lucid way:

Theorem 2.1 (Hadwiger (1952c); Spandaw (2002)). Two cuboids of equal volume have
a common dissection into cuboids if and only if their edges are, up to a permutation,
rational multiples of each other. �

Since 3
√

2 is irrational, our problem is thus insoluble this way. Here again, the decisive
tool is an invariant: we associate to a a1 × a2 × a3 cuboid the value S(a1 × a2 × a3) :=
1
6

∑
σ∈S3

aσ(1)⊗aσ(2)⊗aσ(3) ∈ R⊗Z R⊗Z R. This value is invariant under a permutation
of the axes and under a dissection into smaller cuboids. Of course, we can easily calculate
this invariant for our cube and the altar: S(Altar) = 2 ⊗ 1 ⊗ 1 and S(Cube) = 3

√
2 ⊗

3
√

2 ⊗ 3
√

2, which are obviously two different values. Observe that we may relocate integer
factors but, after all, 3

√
2 is irrational. Partial results concerning rectangular dissections can

be found already in Dehn (1902). However, they do not cover our case, since his main
interest was the relation of the pieces to the ensemble.

To the present day, only a few tetrahedra are known which are equidecomposable with a
cube: there are the three one-parameter families of tetrahedra of Hill (1896) and in addition
27 isolated tetrahedra which are completely listed in Bolt�ıanksiı̆ (1978, §18). A particularly
nice and elementary proof of the equidecomposability of Hill’s tetrahedra to a straight
prism which uses only six pieces is described in Schöbi (1985). Such a prism is according
to Theorem 1.1 equidecomposable to a cuboid.

3 Dissections and tilings

A nice riddle asks for a dissection of the cross in Fig. 3.1, which is built from five squares,
such that the pieces can be reassembled to form a square. A trial and error strategy may take

Fig. 3.1 A cross built from five squares

a while and may lead to quite a large number of pieces. However, there is an astonishing
method to generate an answer. The method starts with a tiling of the plane by copies of
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Fig. 3.2 Double tiling of the plane

the crosses. This is, of course, not possible with every polygon but the cross works just
fine. Then Fig. 3.2 shows where we can find the desired square. Indeed, we find quite
automatically a second tiling of the plane by the square in such a way that the periods of
both tilings agree. If we cut one of the crosses along the square tiling we get precisely the
common dissection of the square and the cross with only four pieces! Several of Escher’s
famous tilings can be interpreted in a similar manner: in “Reptiles” (Fig. 3.3) we find a
tiling in which every lizard is equidecomposable to a regular hexagon.

Fig. 3.3 M.C. Escher: Reptiles, lithography, 1943

Mathematically speaking a double tiling is given by a lattice � ∈ R
n and two fundamental

domains E and F , that is � + E covers R
n almost disjointly and � + F does that as well.

The tiling method has led to many dissections with surprisingly few pieces. Already Mahlo
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Fig. 3.4 Pythagorean metamorphosis

(1908) and MacMahon (1922) noticed that one can prove the pythagorean theorem using
the double tiling in Fig. 3.4. See also Rogers (2005) for a more detailed presentation of
this part of the story.

Common dissections originating from the tiling method with only parallel translations of
copies of a polygon have always automatically the property that not only one common
dissection is generated but even a whole family. If one shifts, e.g., the square tiling in
Fig. 3.2 relative to the cross tiling then we get another common dissection, yet with less
symmetry and possibly more pieces.

Common dissections that are generated by the tiling method have another property which
reminds us of Observation 1.4: each edge of every piece of the dissection is in one of the
two polygons on the outside and in the other on the inside, provided both tilings do not
share common lines. (The example in Fig. 1.4 actually comes from a tiling of the plane
by rectangles and triangles with common lines.) Thus we may take Observation1.4 as an
indication that the common dissection of altar and cube we found also comes from a tiling
of space. We come back to this question later on.

Curiously the tiling method sometimes works even if one or both polygons do not allow
a tiling of the plane. Let us try to dissect a genuine Swiss cross into a square: the leg of
a Swiss cross is seven parts long but only six parts wide (this is constituted in a federal
regulation: Bundesversammlung 1889). This cross only generates a tiling of the plane if
one allowed to add little squares to fill the gaps between neighboring crosses, see Fig. 3.5.
The point is that we can easily find a tiling of the plane using a square of the same area
as the Swiss cross and the little square we introduced in the tiling with the cross. Also
in this case we can match the periods of both tilings (see Fig. 3.6). We conclude that the
Swiss cross and the square are equivalent by completion. In this case, the little square we
introduced artificially does not bother! We have indeed a common dissection of the Swiss
cross and a square with five pieces (Fig. 3.7). We observe that in the suitable orientation
the four larger parts do not have to be rotated but only shifted from their place in the square
to their place in the cross. Yet, the little square has to be rotated.

The world wide web is a source of lists of common dissections, see, e.g., Nowlen (2001)
or Weisstein (2003). The book by Frederickson (1997) describes in addition numerous
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Fig. 3.5 Tiling by a Swiss cross Fig. 3.6 Common tiling of the plane by Swiss
crosses and squares

Fig. 3.7 Common dissection of the Swiss cross and a square

constructions and offers historical information. As an example we display three more dis-
sections in Fig. 3.8. The dissection of the square and the octagon is obviously generated
by an almost-tiling. Also the dissection of the dodecagon seems to have a similar origin
but it does not come from a double tiling since several of the pieces are rotated, and there
are some edges that are inside both figures (compare with the Swiss cross solution). For
the dissection of the pentacle and the pentagon it is hard to tell how it was found but it
does not look as if it originated from a double tiling. . .

Fig. 3.8 More dissections

Also in space it is sometimes possible to find common dissections of polyhedra by the
tiling method. Yet, this remains a limited tool: Hadwiger (1963) conjectured that, whenever
a tiling of R

d is possible with congruent polyhedra, the polyhedron must be equidecom-
posable with a cube. This conjecture was proven by Groemer (1964), Hadwiger (1952b)
and Mürner (1975, 1977) under different additional hypotheses concerning the kind of
the tiling. Finally Debrunner (1980) was able to show that even the existence of a well-
balanced tiling implies that the Dehn invariant of the used polyhedron must be zero. (For
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a well-balanced tiling it is enough if every polyhedron used in the tiling is similar to the
original polyhedron with a similarity constant bounded away from zero and infinity, and
even finitely many polyhedral holes are allowed.) From Debrunner’s theorem, it follows
from the results of Sydler and Jessen that, in dimensions three and four, the polyhedron
used for the tiling must then be equidecomposable to a cube. In particular, every quasi-
crystal, a solid which allows a non-periodic tiling of space and possibly even no periodic
one, is equidecomposable to a cube.

Having now the tiling method at hand, we want to try to find the common dissection of
the altar and the cube in seven pieces also by a double tiling of the space. To this end, we
consider the cube

Cube :=
{

3∑

i=1

xiwi

∣
∣
∣
∣
∣

xi ∈ [0, 1]
}

,

where wi = 3
√

2 ei and the ei denote the three basis vectors in R
3. For i = 1, 2, 3 let

G·i be a (for the moment arbitrary) vector in R
3 and � = GZ

3 =
{∑3

i=1 G·iγi
∣
∣γi ∈ Z

}

the generated grid. Then Cube + � is a tiling of the space if the following conditions are
satisfied:

G·1 = w1,

G·2 = aw1 + w2,

G·3 = bw1 + cw2 + w3,

where a, b and c are real numbers. Actually, up to a rotation and a translation, every tiling
with a cube that is generated by a grid is of this form. The grid � has the generating vectors

G·1 =




3
√

2
0
0



 , G·2 =




3
√

2 a
3
√

2
0



 , G·3 =




3
√

2 b
3
√

2 c
3
√

2



 .

We choose a′
1 = e1, a′

2 = e2 and a′
3 = 2e3, and consider the cuboid

Altar′ :=
{

3∑

i=1

xi a
′
i

∣
∣
∣
∣
∣

xi ∈ [0, 1]
}

,

which is spanned by these three vectors, and a grid � = HZ
3. In order that Altar′ + � is

a tiling, we aim to satisfy one of the following conditions:

Variant 1: Variant 2:
H·1 = a′

1,

H·2 = ra′
1 + a′

2,

H·3 = sa′
1 + ta′

2 + a′
3.

H·1 = a′
3,

H·2 = ra′
3 + a′

2,

H·3 = sa′
3 + ta′

2 + a′
1.

The grid � has the following generating vectors in Variant 1:

H·1 =



1
0
0



 , H·2 =



r
1
0



 , H·3 =



s
t
2



 ,
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and in Variant 2:

H·1 =



0
0
2



 , H·2 =



0
1
2r



 , H·3 =



1
t

2s



 .

In order to have a common tiling of the space by the altar and the cube, the two grids �

and � have to be congruent or mirror congruent. Now we observe at once that Variant 1
cannot lead to a common tiling: the shortest generating vector in � has (for every choice
of the parameters r , s, t) length 1. On the other hand (for every choice of the parameters
a, b, c) every non-zero vector in � has at least length 3

√
2 > 1. Thus we can restrict our

attention to Variant 2. Since we are interested only in one particular solution, we try to
find the parameters for which even both fundamental domains G[0, 1]3 and H [0, 1]3 are
congruent or mirror congruent (and not only the grids). In order to have this it suffices that
for a permutation σ of the set {1, 2, 3} the following is true:

〈
G·i |G· j

〉 = 〈
H·σ(i)|H·σ( j )

〉

for all i ≤ j ∈ {1, 2, 3}. Now, it is easy to see that for σ(1) = 1 there is no solution,
since ‖G·1‖ = 3

√
2 
= 2 = ‖H·1‖. It remains to consider four cases. From these, we retain

only the one which actually leads to the solution, namely the cyclic shift σ with σ(1) = 2,
σ(2) = 3, σ(3) = 1. In this case, the six equations are:

3
√

4 = 1 + 4r2, (1)
3
√

4 a = 4rs + t, (2)
3
√

4 b = 4r, (3)
3
√

4 (1 + a2) = 1 + 4s2 + t2, (4)
3
√

4 (ab + c) = 4s, (5)
3
√

4 (1 + b2 + c2) = 4 . (6)

From (1), (3) and (6) it follows that

r = −1

2

√
3
√

4 − 1,

b = − 3
√

2

√
3
√

4 − 1,

c = −
√

3
√

4 − 1,

where we have chosen a sign for the root. The remaining three equations turn out not to
be independent. Indeed, they can be solved for every choice of a. (The reason is that the
volumes of the fundamental domains G[0, 1]3 and H [0, 1]3 agree by construction.) For

a = 0 we find s = 3√4
4

√
3
√

4 − 1 and t = 3
√

2 − 1
3√2

to solve the system. The resulting grid

� is therefore generated by the columns of the matrix

G :=





3
√

2 0 − 3
√

4
√

3
√

4 − 1

0 3
√

2 − 3
√

2
√

3
√

4 − 1
0 0 3

√
2




 .
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This matrix is all you need to know to reconstruct the seven piece solution: an orthogo-
nalization of the column vectors of G in the natural order by the Gram-Schmidt method
yields the spanning vectors of the cube: we find

w1 = G·1,

w2 = G·2 − 〈w1|G·2〉
〈w1|w1〉 w1,

w3 = G·3 − 〈w1|G·3〉
〈w1|w1〉 w1 − 〈w2|G·3〉

〈w2|w2〉 w2,

and get

Cube =
3∑

i=1

[0, 1]wi

=










3
√

2 0 0
0 3

√
2 0

0 0 3
√

2








a
b
c



 a, b, c ∈ [0, 1]





.

If we shift this cube by elements of the grid we obtain the tiling of the space: Cube+ GZ
3.

Orthogonalization in the order given by σ , i.e., (G·3, G·1, G·2), yields the spanning vectors
for the altar:

a1 = G·3, a2 = G·1 − 〈a1|G·1〉
〈a1|a1〉 a1, a3 = G·2 − 〈a1|G·2〉

〈a1|a1〉 a1 − 〈a2|G·2〉
〈a2|a2〉 a2.

Hence

Altar =
3∑

i=1

[0, 1]ai

=












− 3
√

4
√

3
√

4 − 1
3√4
2 0

− 3
√

2
√

3
√

4 − 1
3√2
2 − 1

3√4
2

3
√

2
3√2

√
3√4−1

2

3√4
√

3√4−1
2










a
b
c



 a, b, c ∈ [0, 1]






.

If we shift this altar by elements of the grid we obtain the tiling of the space: Altar + GZ
3.

Now, the altar intersects precisely seven of the shifted cubes (and vice versa). And the
intersection sets are just the seven pieces we found earlier! By construction, they build the
altar. But since both tilings share the same grid, they can be reassembled to build the cube.
In Fig. 3.9 we can see how the altar lies in the seven cubes. The arrows indicate the basis
of the grid G·1, G·2, G·3; two of them point into directions of edges of the cube, the third
one in the direction of the hidden long edge of the altar.

Further investigations lend some support to the conjecture that the solution in seven pieces
which we found is minimal among all solutions which are generated by the tiling method.
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Fig. 3.9 Seven pieces by double tiling

Fig. 3.10 A P-slide

Concerning solutions without any restriction, “in the very last pocket”, we discovered that
Specker’s question had already been posed over 70 years ago by Cheney (1932). An eight
piece solution by Ransom was published in Ransom (1933), and it is mentioned that the
proposer solved the problem as well. This eight piece solution is similar to the one we
found first. Cheney also indicates that, since that solution was sent to the printer, he had
learned of a seven piece solution by Wheeler. This solution was published in Wheeler
(1935). It was based on a different rectangle metamorphosis that puzzlers call the P-slide
(see Fig. 3.10). This P-slide is not induced by a proper double tiling, since the two involved
translations are parallel. As a consequence, Wheeler’s seven piece solution is not induced
by a double tiling but still needs only translations. However, it does not have the inside out
property of our seven piece solution. Later on, Goldberg (1966) published a duplication of
the cube by dissection and a hinged linkage: The ten pieces of his solution can be hinged
in such a way, that the pieces roll over from the altar position to the cube. Then, half
a century after Cheney proposed the problem, Hanegraaf (1989) improved the solution
again and reduced, by using two P-slides, the number of pieces to six. The key is to avoid
intersection of the first and second stage cuts:



Delian Metamorphoses 17

Fig. 3.11 Hanegraaf’s six piece solution

Theorem 3.1 (Hanegraaf (1989)). The metamorphosis from altar to cube can be done
with six pieces. �

However, the six piece solution needs rotation of some pieces and an inside out property
like Observation 1.4 is not valid any more. To our knowledge, Hanegraaf’s solution is the
minimal known today. Yet, though it seems optimal, puzzlers seemingly never tried or suc-
ceeded in proving this or similar optimality results and the lower bound question remains
open.

Open Question 3.2. Is it possible to achieve a six piece solution

– using the tiling method?

– with the inside out property?

– with translations only?

Is it possible to achieve a solution with five pieces?

We conjecture that Theorem 3.1 is optimal in the general setting and Theorem 1.3 is opti-
mal when only translations are allowed or the inside out property is required.
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