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Introduction

The Greeks developed geometry as a deductive science, its main results being derived from
axioms. The Indians, however, studied geometry in its arithmetic aspects from early times.
For instance, construction of right angled triangles with rational sides and hypotenuse was
a problem of interest right from the Sulva period in India. In this tradition, Brahmagupta,
in the 7th century AD, studied the question of the existence and construction of (cyclic)
quadrilaterals whose sides and diagonals are rational. This work came to light to the Euro-
pean mathematicians through the work of Colebrooke [2]. Chasles, the French geometer,
was so fascinated by this that he, in fact, included a note on Brahmagupta’s work in [1].

.

Die Suche nach ebenen geometrischen Figuren mit ganzzahligen oder rationalzahligen
Seitenlängen und/oder Flächeninhalten hat tiefe historische Wurzeln. Beispielsweise
führt die Suche nach rechtwinkligen Dreiecken mit ganzzahligen Katheten und Hy-
potenuse auf die pythagoräischen Zahlentripel. Ein anderes Beipiel ist das sogenannte
Kongruenzzahlproblem aus dem 7. Jh., d.h. die Frage nach der Existenz rechtwinkliger
Dreiecke mit rationalzahligen Seitenlängen und vorgegebenem ganzzahligem Flächen-
inhalt, ein bis heute noch nicht vollständig gelöstes Problem. Im vorliegenden Beitrag
geht es um die Existenz von Vierecken mit rationalen Seiten und Diagonalen. Die
Autoren erinnern dabei zunächst an Kummers Parametrisierung solcher Vierecke mit
Hilfe von rationalen Punkten auf speziellen elliptischen Kurven und diskutieren danach
gewisse entartete Fälle, welche in Kummers Arbeit unberücksichtigt blieben.
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Kummer, in [6], makes a critical study of the original work of Brahmagupta as explained
by Chasles and shows that the existence of rational quadrilaterals (not necessarily cyclic)
is equivalent to the existence of rational points of a particular type on certain cubic curves.

We begin this paper with a brief account of the early history of the problem and examine
Kummer’s method.

Starting with a given rational triangle, Kummer gives an iterative method for constructing
infinite families of rational quadrilaterals, using the so called “ascent method” of Euler
for the construction of solutions of “canonical” quadri-quadratic equations [7, pp. 255–
256]. We note that Kummer has tacitly assumed that the initial rational triangle ABC is
the union of two rational triangles AB E and B EC with AE �= EC . If AE = EC , we
are naturally led to consider the question of existence of rational triangles with a rational
median. It turns out that this is equivalent to the existence of rational points of a particular
type in the intersection of two quadrics, or equivalently, to the existence of certain rational
points for a class of elliptic curves [7].

We show that in the special case where the cosine c of the base angle at the median B E has
absolute value 1/3, the question of existence of such a rational triangle is equivalent to that
of the existence of four rational squares in arithmetic progression (considered by Fermat
and Euler [7]), which is known to have a negative answer. By using a descent method, we
show that the answer is negative also for |c| = 1/2.

Throughout this paper, we mostly follow the notation in Kummer [6]. All the curves in
this paper are defined over the field Q of rationals and by a rational point, we mean a point
defined over Q.

We are very thankful to the referee for going through an earlier version of this paper and
for suggesting several improvements in the exposition.

1 The beginnings

We shall begin with a brief description of Brahmagupta’s method of construction of ratio-
nal triangles and cyclic rational quadrilaterals. By a rational triangle we mean a triangle
ABC whose sides AB , BC , C A are rational numbers. Any rational triangle ABC whose
area is also rational is obtained through the juxtaposition of two rational right angled tri-
angles AB P and B PC where B P is the altitude of the resulting triangle ABC .

A C

B

P

Fig. 1

A quadrilateral ABC D is called rational if the sides AB , BC , C D, D A and also the
diagonals AC , B D are rational. Brahmagupta gave two constructions for rational cyclic
quadrilaterals [3]. In the first method, two rational right angled triangles AB P and B PC
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are glued along B P to yield a rational triangle ABC with rational area. Then B P is ex-
tended to meet the circumcircle of ABC at D, to yield the cyclic quadrilateral ABC D. It is
clear that the triangles AP D and B PC are similar and, hence, P D is rational. Therefore,
ABC D is a rational cyclic quadrilateral (Fig. 2).

In the second method, a rational length AC is chosen and two rational triangles ABC and
ADC are constructed with right angles at B and D. The resulting quadrilateral is cyclic
and rational (Fig. 3).

Kummer, in [6], notices that the first method can be modified to yield other rational cyclic
quadrilaterals. Take first a rational triangle ABC (not necessarily with rational area). Let
E be a point on AC such that the triangle AB E is rational. Extend B E to meet the cir-
cumcircle of ABC at D. Then, ABC D is a rational cyclic quadrilateral (Fig. 4). In fact, all
rational cyclic quadrilaterals are obtained in this way. He also analyses the question of con-
structing arbitrary rational quadrilaterals starting with rational triangles AB E and B EC .
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Fig. 2
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Fig. 4

2 Kummer’s parametrisation of rational quadrilaterals
through rational triangles

Suppose that AB E is a triangle (see Fig. 5).
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u ω

Fig. 5

Let angle E = ω, angle A = u, AB = a, B E = β, AE = α. Let c = cos ω. We have
a2 = α2+β2−2αβc. Let a/β = x and α/β = y, so that x2−y2+2cy−1 = 0. Thus, for a
given real value c, with |c| < 1, any point (x, y) on the conic X2 −Y 2 +2cY −1 = 0, with
x and y > 0, determines a triangle. This conic is the hyperbola (X − Y + c)(X + Y − c) =
1 − c2 = k2 where k = sin ω. Let ξ �= 0 be a real number. Let us define x and y by the

equations x + y − c = ξ and x − y + c = k2

ξ
. Then, (x, y) is a point on the hyperbola.

Since x = ξ2+k2

2ξ
and y = ξ2−k2+2cξ

2ξ
= (ξ+c)2−1

2ξ
, if c �= 0 is rational and if ξ is chosen
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to be rational and such that both x and y are positive, then ξ determines a triangle AB E
the ratio of whose sides are rational. Conversely, any triangle, the ratio of whose sides are
rational, is obtained in this way.

If c is rational, k2 = 1 − c2 is rational. If k is itself rational, the above relates to Brah-
magupta’s construction of a rational triangle with rational area as a juxtaposition of two
rational right triangles.

The problem of constructing a rational quadrilateral can now be posed as follows: Deter-
mine successively rational triangles AB E , B EC and C E D in such a way that the triangle
AE D is also rational (Fig. 6).

As a first step, let c �= 0 be a rational number such that |c| < 1 and let β be any positive
rational number. Let ξ > 0 be any rational number such that (ξ+c)2−1 > 0. We construct
the triangle AB E with AB = a, B E = β, AE = α with

a

β
= ξ2 − c2 + 1

2ξ
and

α

β
= (ξ + c)2 − 1

2ξ
.

(Then c = cosine of the angle E). Now, suppose that B EC is a rational triangle where
EC = γ and BC = b, η = b+γ−c′β

β
, where c′ = −c is the cosine of the angle B EC so

that η = b+γ+cβ
β

. We then have

b

β
= η2 − c2 + 1

2η
and

γ

β
= (η − c)2 − 1

2η
.

(We note that c and the parameter ξ or η determine a triangle up to similarity.)

Since

α

(
γ

β

)
= γ

(
α

β

)
,

we have α[(η − c)2 − 1]ξ − γ [(ξ + c)2 − 1]η = 0. Thus, (ξ, η) is a rational point on the
cubic

αX[(Y − c)2 − 1] − γ Y [(X + c)2 − 1] = 0. (∗)

Suppose that (ξ, η) is a rational solution for (∗) so that we have the two rational triangles
AB E and B EC . In order to complete the quadrilateral, we need rational triangles AE D
and C E D (Fig. 6).
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Fig. 6
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Let AD = l, DC = m and E D = δ. As before, the triangle AE D is determined by the
rational parameter x = l+δ+cα

α
with

δ

α
= (x − c)2 − 1

2x
and

l

α
= x2 − c2 + 1

2x
.

Similarly, for the triangle C E D taking y = m+δ−cγ
γ

we should have

δ

γ
= (y + c)2 − 1

2y
and

m

γ
= y2 − c2 + 1

2y
.

Then (x, y) should be a rational point on the cubic

αY [(X − c)2 − 1] − γ X[(Y + c)2 − 1] = 0 . (∗∗)

Conversely, if (x, y) is a rational point on the cubic (∗∗), such that the corresponding ra-
tios δ/α and δ/γ are positive, then we have the rational triangles AE D and C E D. Thus,
if (ξ, η) is a rational point on the cubic (∗) yielding the rational triangle ABC , any ra-
tional point (x, y) in (∗∗) which gives a rational triangle AC D will determine a rational
quadrilateral ABC D.

3 Euler’s ascent method

Euler’s ascent method is an iterative process of finding a sequence of rational points on a
quadri-quadratic curve [7, pp. 255–256].

In general, let P(X, Y ) = 0 be a polynomial equation over Q such that P is quadratic in
both X and Y . Suppose (x1, y1) is a rational point on the curve P(X, Y ) = 0, so that x1 is a
root of P(X, y1) = 0. This quadratic in X has a second root x2. We consider the quadratic
equation in Y given by P(x2, Y ) = 0. This equation has two roots, one of them being y1.
Let y2 be the second root. Then, we return to the first case and consider P(X, y2) = 0 and
note that x2 is a solution of this equation. Let x3 be the second solution. Then, (x3, y2) is
also a rational point of the curve. We can continue this process to obtain, in general, an
infinity of rational points on the curve P(X, Y ) = 0. However, in particular cases, this
process may fold and fail to give an infinite number of solutions.

Kummer applies this method to the cubic (∗∗) for finding rational quadrilaterals. This
cubic equation is equivalent to the following (quadratic) equations:

αY X2 − (γ Y 2 + 2c(α + γ )Y − γ k2)X − k2αY = 0 (I)

and
γ XY 2 − (αX2 − 2c(α + γ )X − αk2)Y − k2γ X = 0 . (II)

First note that X = 0, Y = 0, is a solution of both (I) and (II); in fact, X = 0 if and
only if Y = 0. Suppose (x1, y1) is a rational point on the cubic (I) with x1 �= 0, y1 �= 0.
Consider the quadratic equation in X got by substituting Y = y1 in (I). The product of
the roots being −k2, we deduce that (−k2/x1, y1) is also a rational point on the cubic. If
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we substitute X = −k2/x1 in equation (II), it can be verified that the resulting quadratic
equation is

k2

x2
1

[γ x1Y 2 − (αx2
1 − 2c(α + γ )x1 − αk2)Y − k2γ x1] = 0 ,

and has the same roots as when we substitute X = x1 in (II). Therefore, the process folds
and yields at most four rational points, (x1, y1), (−k2/x1, y1), (x1,−k2/y1), (−k2/x1,

−k2/y1), starting from any rational point (x1, y1) different from (0,0).

In order to get around this difficulty and produce an infinite number of rational points of
the cubic, Kummer applies a quadratic transformation by taking XY = Z . Multiplying
equation (II) by X and substituting XY = Z , we get a quadratic equation in Z :

γ Z2 − (αX2 − 2c(α + γ )X − αk2)Z − k2γ X2 = 0 . (II′)

Rewriting this as a quadratic in X , we get

(αZ + k2γ )X2 − 2c(α + γ )Z X − Z(γ Z + αk2) = 0 . (I′)

For any value x of X , if z, z′ are roots of the quadratic equation (II′), then zz′ = −k2x2

and z + z′ = αx2−2c(α+γ )x−αk2

γ
. Also, for any value z of Z , if x, x ′ are roots of (I′), then,

xx ′ = − z(γ z+αk2)

αz+k2γ
and x + x ′ = 2c(α+γ )z

αz+k2γ
.

At this point, Kummer takes the initial value X = 0. The two roots z, z′ of (II′) are z = 0

and z′ = −αk2

γ
. Substituting Z = −αk2

γ
in (I′), we get the two roots x = 0 and x ′ = −2cα

α−γ
.

Kummer tacitly assumes α �= γ , and proceeds to apply the process iteratively to obtain
an infinite sequence of rational points. By choosing particular values for c, α, γ and β, he
exhibits infinite sequences of rational quadrilaterals.

This argument obviously breaks down if α = γ . We treat this case in the next section.

4 Rational triangles with a rational median

Let α = γ �= 0. Then we have a rational triangle ABC with a rational median B E (Fig. 7).
Let c denote the cosine of the angle ω and let B E = β.

A C

B

Eα α

a b

ω
β

Fig. 7

Let (ξ, η) be the parameters for the triangles AB E and B EC as defined earlier. We then
know that (ξ, η) is a point on the cubic (∗). This cubic equation can be rewritten as

Y X2 − (Y 2 − 4cY − k2)X − k2Y = 0, (I′′)
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and also as
XY 2 − (X2 + 4cX − k2)Y − k2 X = 0. (II′′)

We note that (0,0) is a rational point and that X = 0 if and only if Y = 0. Let us suppose
(x, y) is a rational point on (I′′) (or (II′′)), such that x �= 0, y �= 0. Let y = xt . Then in
(II′′)

x3t2 − x3t − 4cx2t + k2xt − k2x = 0

or
x[x2t2 − (x2 + 4cx − k2)t − k2] = 0 ,

so that the quadratic equation in X , T (T − 1)X2 − 4cT X + (T − 1)k2 = 0 has a rational
root x �= 0 for some rational value t of T , which implies, in particular, that t �= 0 or 1.
The discriminant of this equation for T = t is

16c2t2 − 4(1 − c2)t (t − 1)2 = 4t (1 + c)2(t − λ)(1 − λt),

where λ = (1− c)/(1+ c). Thus, 4(1+ c)2T (T −λ)(1−λT ) should be a square for some
rational value t of T . We have the following:

Proposition 1. Let ABC be a rational triangle with a rational median B E such that the
cosine of the angle AE B = c. Let λ = (1 − c)/(1 + c). Let x be the rational parameter
associated with the triangle AB E and xt the parameter for the triangle B EC. Then,
there is a rational number z such that (z, t) is a rational point on the elliptic curve Z2 =
4(1 + c)2T (T − λ)(1 − λT ).

Conversely, suppose (z, t) is a rational point on this elliptic curve and let x = 4ct±z
2t (t−1)

. If

for one of the values of x, (x+c)2−1
2x > 0, then there exists a rational triangle ABC with

rational median B E and cosine of angle AE B = c.

Proof . We need only to prove the converse.
If (z, t) is a rational point, the discriminant of the quadratic equation t (t − 1)X2 − 4ct X +
(t − 1)k2 = 0 is a square. This gives us the rational roots 4ct±z

2t (t−1)
. Let x be one of the roots

such that (x+c)2−1
2x > 0. Then using the equation x2t2 − (x2 + 4cx − k2)t − k2 = 0, we

get (xt−c)2−1
2xt = (x+c)2−1

2x = α say. Then we have rational triangles AB E and B EC such
that B E the median of the triangle ABC has length 1 and AE = EC = α and cosine of
the angle AE B = c. �
Remark. The elliptic curve given by Z2 = T (T − λ)(1 − λT ) has the obvious rational
points (0, 0), (λ, 0) and (1/λ, 0), which give 2-torsion points on the elliptic curve. These
points yield degenerate cases of the triangle. In case T = 0, the corresponding rational
point on (II′′) is (0,0) which gives the degenerate triangle where β = 0. If T = λ =
(1 − c)/(1 + c), a quick computation gives X = −(1 + c) and Y = −(1 − c) which will
not determine triangles. Similarly, if T = 1/λ, then X = 1 − c and Y = 1 + c, which will
not determine triangles.

We also note the following:

The cosine formulae for the triangles AB E and B EC give the two equations

a2 = α2 + β2 − 2αβc and b2 = α2 + β2 + 2αβc .
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Therefore,
b2 + a2 = 2(α2 + β2) = (α + β)2 + (α − β)2

and
b2 − a2 = 4αβc = [(α + β)2 − (α − β)2]c .

Let α + β = h and α − β = g. We have

b2 + a2 = h2 + g2 and b2 − a2 = (h2 − g2)c

and, hence,
h2(1 + c) + g2(1 − c) = 2b2, (e1)

h2(1 − c) + g2(1 + c) = 2a2 (e2)

so that the pair of quadrics in P3

(1 + c)

2
X2 + (1 − c)

2
Y 2 = Z2 and

(1 − c)

2
X2 + (1 + c)

2
Y 2 = T 2

intersect at a rational point (x, y, z, t). Note that x2 �= y2.

Conversely, suppose (x, y, z, t) is a rational point in the intersection of the quadrics, such
that x2 �= y2. Then, by retracing the steps, we can produce a rational triangle with a
rational median. We have, therefore, proved the following:

Proposition 2. The following are equivalent:

(1) There exists a rational triangle ABC with rational median AE and with the cosine
of the base angle at E = c.

(2) Let |c| < 1. The pair of quadrics (F, G) in P3, where

F : (1 + c)

2
X2 + (1 − c)

2
Y 2 − Z2 = 0 ,

G : (1 − c)

2
X2 + (1 + c)

2
Y 2 − T 2 = 0 ,

has a rational point (x, y, z, t) such that x2 �= y2 in its intersection.

Remark 1. Rational points (x, y, z, t) with x2 = y2 give rise to degenerate triangles.

Remark 2. Let D(t) be the discriminant of the pencil F−tG of quadrics. It can be checked
that

D(t) = (1 + c)2

4
t (t − λ)(1 − λt) .

The curve 	 in P3 defined by the pair of quadrics F and G has the obvious rational points
given by X2 = Y 2 = Z2 = T 2. Hence, by the proposition in [7, p. 136], it follows that
the curve 	 is isomorphic to the curve Z2 = D(t) which is the elliptic curve defined in
Proposition 1 above.
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5 Rational squares in arithmetic progression
A solution to the problem of finding three rational squares in arithmetic progression was
already known to the Greeks. This question is equivalent to that of finding rational pytha-
gorean triples. In fact, if x2, y2, z2 are in arithmetic progression, then we have y2 = 1

2 (x2+
z2) = ( z+x

2

)2 + ( z−x
2

)2, so that
( z+x

2

)2
,
( z−x

2

)2
, y2 is a pythagorean triple. Conversely, if

u2, v2, y2 is a pythagorean triple, then, taking z = u + v and x = u − v, we see that x2,
y2, z2 are in arithmetic progression.

Motivated by the above Fermat (see [7, p. 149]) raised the question of the existence of four
distinct rational squares in arithmetic progression. Euler gave a proof in 1780 that such a
foursome does not exist. However, as pointed out by A. Weil (see [7, p. 115]), the first
satisfactory proof (based on “descent method”) was given by Itard1 (see [5, p. 112]). Weil
also indicates another proof using properties of curves of genus 1 (see [7, p. 147]).

We shall show that the existence of a rational triangle ABC , with rational median B E and
cosine of angle AE B = 1

3 , is impossible by showing that this problem is equivalent to the
four squares problem.

Proposition 3. The existence of a rational triangle with a rational median and such that
the cosine of the base angle at the median is equal to ±1/3 is equivalent to the existence
of four rational squares in a nontrivial arithmetic progression. Hence, there is no such
triangle.

Proof . We appeal to our earlier theorem. In equations (e1) and (e2), if we substitute c =
1/3, we get the two equations

2h2 + g2 = 3b2 and h2 + 2g2 = 3a2.

Hence,
3b2 − 3a2 = h2 − g2 and b2 + a2 = h2 + g2,

so that
2b2 − a2 = h2 and 2a2 − b2 = g2,

i.e., g2, a2, b2, h2 are in arithmetic progression. Conversely, if g2, a2, b2, h2 are in arith-
metic progression, we see by retracing the steps that the equations (e1) and (e2) hold with
c = 1/3. �
Remark. If c = 1/2, the corresponding diophantine equations for a, b are 3a2 −b2 = 2x2

and 3b2 − a2 = 2y2. One can prove the nonexistence of rational solutions in this case also
(excepting the trivial case a2 = b2 = x2 = y2) by following the method adopted in Weil
(see [7, pp. 141–149]).

On the other hand, the method of Fermat’s descent can be applied to give a direct proof of
the result.

Proposition 4. The system of equations

3b2 − a2 = 2z2, 3a2 − b2 = 2w2,

has no integral solution other than the obvious ones a2 = b2 = z2 = w2.

1We thank Michel Waldschmidt for sending us a copy of the relevant pages of the book by Itard.
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Hence, there are no rational triangles ABC with rational median B E and such that the
cosine of the base angle at the median is equal to ±1/2.

Proof . Suppose there is an integral solution {a, b, z, w} and such that not all a2, b2, z2, w2

are equal. It is easy to see that in this case b �= 0 and a �= 0.

We may assume that a and b are coprime. We also assume that a, b > 0 and among all
integral solutions max(a, b) is the least possible value.

Let A = a/b, B = b/a, W = w/a, and Z = z/b. We rewrite the equations as

A2 + 2Z2 = 3 , (1)

B2 + 2W 2 = 3 . (2)

We find rational parametrizations of these equations. Let Z = 1 + t (A − 1). Substituting
in equation (1) we have the quadratic equation in A:

(1 + 2t2)A2 + 4(t − t2)A + 2t2 − 4t − 1 = 0 .

Since A = 1 is a root, the other root is 2t2−4t−1
1+2t2 and the corresponding value for Z is

−2t2 − 2t + 1

1 + 2t2 .

Let t = λ/µ where λ, µ are coprime integers. Since a and b are coprime, it follows that
for some integer k,

ka = 2λ2 − 4λµ − µ2,

kb = µ2 + 2λ2,

kz = µ2 − 2λµ − 2λ2.

(3)

Since µ2 + 2λ2 > 0, we have k > 0. It can be easily checked that k is a divisor of 6.

From equation (2) it follows that there exist integers p, q coprime to each other, and a
positive integer k ′ such that

k ′a = q2 + 2 p2,

k ′b = 2 p2 − 4 pq − q2,

k ′w = q2 − 2 pq − 2 p2.

(It can be checked that k ′ is a divisor of 6.) Therefore, we have

k ′(2λ2 − 4λµ − µ2) = k(q2 + 2 p2) ,

k ′(µ2 + 2λ2) = k(2 p2 − 4 pq − q2) .

Adding and subtracting these equations, we have

k ′λ(λ − µ) = kp(p − q) ,

k ′µ(µ + 2λ) = −kq(q + 2 p) .
(4)
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If k is even, then in view of equations (3), µ is even. Further, if k ′ is odd, then λ(λ − µ)

must be even, and, hence, λ or λ − µ and, therefore, λ must be even, a contradiction to
our assumption that λ and µ are coprime. Thus, k is even (by symmetry) if and only if
k ′ is even. We may cancel the factor 2 from k and k ′ and assume that they are both odd.
Suppose first that k = k ′. Cancelling k from equations (4), we have

λ(λ − µ) = p(p − q) ,

µ(µ + 2λ) = −q(q + 2 p) .

Let p/λ = x and µ/λ = θ . We then have from the above the following quadratic equation
for θ :

θ2(x2 + 1) + 2θ(3x2 − 1) + (3x2 − 1)(x2 − 1) = 0 .

The discriminant of this equation is

4x2(3x2 − 1)(3 − x2) ,

which should be the square of a rational number, so that (3x2 − 1)(3 − x2) must be a
square. Let x = c/d , where c and d are coprime positive integers. (x can be assumed to
be positive.) An easy verification shows that

3c2 − d2 = 2X2, 3d2 − c2 = 2Y 2,

where X and Y are both odd integers.

Thus, (c, d, X, Y ) is a solution of equations (1) and (2). Further, since c and d are coprime,
with c/d = p/λ we have c ≤ p and d ≤ λ. From the equation

q2 + 2 p2 = ka ,

it follows that p < a and, hence, c < a (since k = 1 or 3). Similarly, from

µ2 + 2λ2 = kb ,

we have d < b. By Fermat’s descent, we are through in this case.

Let us, therefore, assume that k �= k′ and without loss of generality that k = 3 and k ′ = 1.
It follows from equations (4) that 3 divides λ−µ and, hence, also λ+ 2µ. Let 3u = λ−µ

and 3v = λ + 2µ. Then, we have

2λ2 − 4λµ − µ2 = 3(5u2 + 2uv − v2) ,

µ2 + 2λ2 = 3(3u2 + 2uv + v2) .

Hence, by equations (4), we have

5u2 + 2uv − v2 = q2 + 2 p2,

3u2 + 2uv + v2 = 2 p2 − 4 pq − q2.

Adding and subtracting these equations, we have

u2 − v2 = q2 + 2 pq ,

2u2 + uv = p2 − pq .
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As before, if p/u = y and v/u = σ , we have the following quadratic equation:

σ 2(1 + y2) + 4σ(1 − y2) + (3y4 − 9y2 + 4) = 0 ,

the discriminant of which is 4y2(3y2 −1)(3− y2) which should be the square of a rational
number. Let y = c/d , where c and d are coprime integers. We get the following equations:

3c2 − d2 = 2X2, 3d2 − c2 = 2Y 2,

where X and Y are both odd integers. Note that c/d = p/u, so that c ≤ p and d ≤ u.
From the equation

q2 + 2 p2 = a ,

it follows that p < a and, hence, c < a. Similarly, d < b, so that we are through once
again by Fermat’s descent. This proves the proposition. �

Rational parallelograms

Dickson (in [4]) gave a complete solution to the problem of finding all rational parallelo-
grams. This is equivalent to finding all rational triangles one of whose medians is rational.
(We may assume that all the lengths are integers.) With the notation as in Section 4, we
have a2 + b2 = g2 + h2. Dickson has given conditions such that a, b, g, h take integral
values. We quickly describe his method below.

Let a + g = mq and b + h = nq , where q = g.c.d. of a + g and b + h, so that (m, n) = 1.
Then, there exists an integer p such that a − g = np and h − b = mp, so that

a = 1

2
(mq + np), g = 1

2
(mq − np) ,

b = 1

2
(nq − mp), h = 1

2
(nq + mp) .

It easily follows from this that

(i) if m and n are odd, then p and q have the same parity;

and

(ii) if only one of m and n is odd then p and q are both even.

Suppose for such an “integer” triangle with an “integer” median, one of the angles at the
base of the median has cosine = 1/3. From the pair of equations a2 = α2 +β2 − 2

3αβ and

b2 = α2 + β2 + 2
3αβ, it follows that b2−a2

h2−g2 = 1
3 . This implies

8mnpq = (m2 − n2)(p2 − q2) ,

which should be impossible in view of Proposition 3 proved above. Perhaps, one could
prove directly under conditions (i) and (ii) for m, n, p, q that there are no solutions.
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