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1 The problem of Cramer-Castillon

“Dans ma jeunesse ... un vieux Géometre, pour essayer mes forces en ce genre, me proposa le
Probléme que je vous proposai, tentez de le résoudre et vous verrez, combien il est difficile.”
(G. Cramer in 1742; quoted in Euler’s Opera, vol. 26, p. xxv)

“Le lendemain du jour dans lequel je lus a I’Académie ma solution du Probléeme concernant le
cercle et le triangle a inscrire dans ce cercle, en sorte que chaque coté passe par un de trois points
donnés, M. de la Grange m’en envoya la solution algébrique suivante.”

(Castillon 1776; see Oeuvres de Lagrange, vol. 4, p. 335)

“Ce probleme passe pour difficile, et il a fixé I’attention de plusieurs grands géométres.”
(L. Carnot, Géométrie de Position, 1803, p. 383)

Problem. Given a circle and n points A1, Az, ..., A, not on this circle (Fig. 1.1, left), find
an n-polygon Bj, B», ..., B, inscribed in the circle whose sides (B; B;+1) pass through
A; fori =1,...,n (where B,41 = By, see Fig. 1.1, right).

This problem has a long history; a special case for n = 3 goes back to Pappus (A.D. 290—
350, see [6]). An unknown “vieux Géometre” proposed the general case for n = 3 to
Cramer, who in 1742 forwarded it to the young Castillon (“you’ll see how difficult it is”,

Ein sehr alter Zweig der Mathematik, die ebene Elementargeometrie, ist immer noch
voller Ritsel. So kennt man zum Beispiel fiir den , most® elementaren Satz von
Urquhart: ,,Wenn AP Q, ARS, PBS und QB R jeweils in einer Linie liegen und A P +
PB = AR+ RB,dannistauch AQ + OB = AS + SB“, keinen eleganten elementa-
ren Beweis. Der hier gegebene Beweis beniitzt die Mobius-Transformation, welche
ehemals fiir ein anderes beriihmtes Problem, das , Problem von Cramer-Castillon*,
erfunden wurde. Der vorliegende Artikel entspringt einer Einfithrungsvorlesung tiber
Geometrie.
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Fig. 1.1 The problem of Cramer-Castillon

see citation). Castillon arrived a third of a century later (1776) at a geometric solution.
Other geometric solutions were found by Euler (1783, see [6]) and by Ottaiano (at the age
of 16; see [4], p. 141). Throughout the 18th century this problem had the reputation of
being very difficult.

One night after Castillon’s presentation at the Academy of Berlin, Lagrange found an
analytic solution (see citations). This solution of Lagrange was simplified by Carnot (1803,
see [2]) and generalized to arbitrary n-polygons.

The Mobius transform.

Wenn man den schlichten, stillen Mann [M6bius] vor Augen hat, muss es einen einigermassen in
Erstaunen setzen, dass sein Vater ... den Beruf eines Tanzlehrers ausiibte. Um die Verschiedenheit
der Generationen vollends vor Augen zu fiihren, erwéhne ich, dass ein Sohn des Mathematikers
der bekannte Neurologe ist, der Verfasser des vielbesprochenen Buches “Vom physiologischen
Schwachsinn des Weibes”. (F. Klein, Entw. der Math. im 19. Jahrh. (1926), p. 117)

The main tool used in our paper is the so-called Mobius transform u — v where

_puta v _ P oq)(u
v_ru—i—s or <1>_const<r s><1> (1.1)

with p, g, r, s known quantities. The matrix is only significant up to a constant factor.

Carnot, in [2], discovered that the composition of two such transforms

_ piu+qi pu2+qx  pui+gq
riuy + s1 ’ roup + 52 ruy +s

where (p q>=<pz cn)(m q1>
r N rn 52 r S1

is again a Mobius transform with the new coefficient matrix being the product of the
two coefficient matrices. An analogous result is true for the inverse operations, and the
transformations with ps — gr # 0 form a group.

(1.2)

The map (1.1) is an involution, i.e., it’s own inverse, iff s = —p.
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Analytic solution of the Cramer-Castillon problem. The crucial discovery of Carnot
was the fact that the calculations become particularly simple, if the tangents of certain
half-angles are used as coordinates. This leads us to the “Pythagorean coordinates” on the
circle (which we suppose is of radius 1, see Fig. 1.2, left; see also [8], p. 124)

o 1—u? 2u

u = tan — , yzm

= 1.3
2 * 1+ u? (1.3)

The point (x, y) moves through the circle in a counter clockwise sense for —oo < u < oo
(and the values are connected to the famous Pythagorean triples (1 — u?, 2u, 1 +u?); from
there the name).

(x,y)

2u
1+u

/2 o

Fig. 1.2 The Pythagorean coordinates on a circle (left) and the involution of the circle with respect to a given
point A (right)

The idea is now the following: we start from an arbitrary point B; with coordinate 1 and
compute its projection B onto the circle from the point A; with given coordinates (a1, b1)
(see Fig. 1.2, right). We then compute B3, By, ... in a similar way and must finally satisfy
the condition B+ = Bj.

Computations: the collinearity of By, By and A is characterized by

2
1—uy 2uy 1

Tl Tl 1—u? 2uy 1+4u}
2
det i—u% 12u22 1= 0, or det| 1 — u% 2uy 1+ u% =0,
+M2 +u2 ai bl 1
al b1 1

which, when multiplied out and divided by the trivial factor uy — uy, gives

—b 1-— — —
2= L+ a or “2) = const bi I—a “ , (1.4
—(ay + Duy + by 1 —a; —1 by 1
a Mobius transform. Repeating this around the n-polygon of Fig. 1.1 and applying (1.2),
we see that we have to multiply all these matrices, and we arrive at the condition

au; +b
cur +d’

a b\ _ —b, 1—a, —b 1—a
where <c d>_(—an—1 b, )"'(—al—l by )

Up+1 = UL =

(1.5)
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Fig. 1.3 Two solutions of a problem of Cramer-Castillon

This represents a quadratic equation for u#; with usually two solutions (see example in
Fig. 1.31).

The creation of projective geometry and the Mdobius transform.

Die durch den Ponceletschen Traité eingeleitete Bewegung pflanzte sich nach Deutschland fort
und ward einerseits von den Analytikern Moebius (1790-1868) und Pliicker (1801-1868) und
andererseits von den Synthetikern Steiner (1796—1863) und von Staudt (1798-1867) weitergefiihrt.

(F. Klein, Vorl. nicht-euklidische Geometrie (1927), p. 11)

It is now fantastic to see, how the above problem and its solution, which had haunted the
greatest minds for centuries, became absolutely natural with the invention of projective
geometry. This subject originated from the epoch-making book of Poncelet [12]. Mo6bius
then (in [9] and more explicitly in [10]) showed that the adequate analytical tool for de-
scribing a one-dimensional “Collineations- Verwandtschaft” were precisely formulas of the
type (1.1), which with the operation (1.2) constitute the Mobius group. Finally, Steiner
(in 1832, see [3], p. 75f) extended projective coordinates to conics. Then the projection
B — B», as well as u1 — up, must be projective maps, even involutions. At the end, the
problem consists in finding the fixed points of the involution u; — u;,4. For this task,
Steiner (in 1833) has found a construction using the ruler alone (see [4], §59 and §33; see
also M. Berger [1], vol. 2, p. 280).

2 Billiard in an ellipse

Suppose we have a billiard table in elliptical form with focuses A and B (see Fig. 2.1, left).
A fundamental property (already known to Apollonius) of ellipses is that a ball leaving a
focus is reflected into the other focus. To see this, we use the fact that £; + £, = const: an
infinitesimal movement of P by a quantity ds (see Fig. 2.1, right) leads to d¢; = —d¥{;
and the two angles noted « are the same.

Problem. Given the angle ¢ under which the ball leaves A (or B), find the angle ¢, under
which the ball arrives in B (or A). What happens to ¢3, ¢4, etc.?

Solution. Put
¢i =COoSQ; . 2.1

IThe author is grateful to his colleague F. Sigrist (Neuchatel) for suggesting such an example.
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Fig. 2.1 Billiard in an ellipse (left); variation of @1, ¢ and £1, {5 (right).

We suppose that the focuses are located at —1 and 1 and that e is the eccentricity of the
ellipse. Hence the major semi-axis is a = Ll If x is the abscissa of P, then 2

1
lip=afex=—-*ex.
e

Now, by definition of the cosine,
x+1 x—1
Cl = —1 9 C2 = 71 9
ex + 5 —ex + 5

which represent Mobius transformations. We invert the first one and insert into the second:

-1
— — 2
( ! 11><1 %) :const-< ! 9) where 0= ¢ .
— 1 e 1 -6 1 e’ +1

Hence the solution is given by the Mobius transform

c1— 06

C2=_9C1+1

with the matrix A= < _1 0 _19 ) . (2.2)
The subsequent angles ¢3, ¢4, etc. are determined by the powers of the matrix A. This
matrix has eigenvectors (}) and (') with eigenvalues 1 F 6. In non trivial situations (i.e.,
the ellipse is not a circle and ¢; # 0) the cosines ¢; will converge to the eigenvector with
maximal eigenvalue, i.e., to —1 (see e.g., [11], §4), and the angles ¢; converge to 7.

Remark. The above results, without using the relations to Mobius transforms and matri-
ces, were proved in [7].

2Remember the fact that £ 1,2 are proportional by a factor e to the distances of P to two fixed lines (directrix).
According to Zeuthen, this was a discovery of Euclid (see [3], p. 69).
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3 Urquhart’s ‘most elementary’ theorem of Euclidean geometry

“Urquhart considered this to be the ‘most elementary’ theorem, since it involves only the concepts
of straight line and distance. The proof of this theorem by purely geometrical methods is not
elementary. Urquhart discovered this result when considering some of the fundamental concepts
of the theory of special relativity.” (D. Elliot, J. Australian Math. Soc. (1968), p. 129)

Fig. 3.1 Urquhart’s theorem

M.L. Urquhart (1902-1966) was a highly appreciated lecturer of mathematics and physics
at several Australian universities; he communicated his mathematical discoveries only to
some of his friends. The following theorem became known by his obituary notice [5] and
gained wider popularity through the book [13].

Theorem. Let the points A, B, P, Q, R, S lie on straight lines as sketched in Fig. 3.1
(left), then

AP +PB=BR+RA  implies AQ+ QB=BS+SA. 3.1)

Proof. The conditions in (3.1) mean that the points P, R, as well as Q, S, lie on two
confocal ellipses with focuses A and B (Fig. 3.1, right). The “billiards” of these ellipses
are determined by formula (2.2), the eccentricity (i.e., the ) being different. Hence, the
trajectories

A P— B S— A and A~ QH— B—R— A

return under the same angle @3 to A, because the matrices

1 -0 1 —¢
(L) = (47
commute. O

Corollary. Under the hypotheses of Urquhart’s theorem, we have also 3
AP BS AQ BR

AL 55 oK (3.2)
PB SA QB RA

3This corollary requires to understand not only addition, but also multiplication and division. We may there-
fore call it “the second most elementary theorem”.
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Proof. We see from the pictures in Fig. 2.1 (right) that
dys £ AP

doi -0y =ds -cosa =dgy - £ = = — = —
gt s * $2- 02 dyp 1% PB

If we now move all four points P, Q, R, S in Fig. 3.1 simultaneously, then the deriva-

tive % resulting from the two different trajectories must give identical results. This
proves (3.2). O

Acknowledgement. The author is grateful to his colleague Pierre de la Harpe for having
drawn his attention to Urquhart’s theorem and to Tabachnikov’s beautiful book. Mr. Stanis-
law Bik from the mathematical library in Geneva required only 5% seconds to find Dorrie’s
book in its original version, despite the fact that some negligent references wrote him as
“Dorrie”.
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