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1 The problem of Cramer-Castillon
“Dans ma jeunesse . . . un vieux Géomètre, pour essayer mes forces en ce genre, me proposa le
Problème que je vous proposai, tentez de le résoudre et vous verrez, combien il est difficile.”

(G. Cramer in 1742; quoted in Euler’s Opera, vol. 26, p. xxv)

“Le lendemain du jour dans lequel je lus à l’Académie ma solution du Problème concernant le
cercle et le triangle à inscrire dans ce cercle, en sorte que chaque côté passe par un de trois points
donnés, M. de la Grange m’en envoya la solution algébrique suivante.”

(Castillon 1776; see Oeuvres de Lagrange, vol. 4, p. 335)

“Ce problème passe pour difficile, et il a fixé l’attention de plusieurs grands géomètres.”
(L. Carnot, Géométrie de Position, 1803, p. 383)

Problem. Given a circle and n points A1, A2, . . . , An not on this circle (Fig. 1.1, left), find
an n-polygon B1, B2, . . . , Bn inscribed in the circle whose sides (Bi Bi+1) pass through
Ai for i = 1, . . . , n (where Bn+1 = B1, see Fig. 1.1, right).

This problem has a long history; a special case for n = 3 goes back to Pappus (A.D. 290–
350, see [6]). An unknown “vieux Géomètre” proposed the general case for n = 3 to
Cramer, who in 1742 forwarded it to the young Castillon (“you’ll see how difficult it is”,

.

Ein sehr alter Zweig der Mathematik, die ebene Elementargeometrie, ist immer noch
voller Rätsel. So kennt man zum Beispiel für den

”
most“ elementaren Satz von

Urquhart:
”
Wenn AP Q, ARS, P BS und QB R jeweils in einer Linie liegen und AP +

P B = AR + RB , dann ist auch AQ + QB = AS + SB“, keinen eleganten elementa-
ren Beweis. Der hier gegebene Beweis benützt die Möbius-Transformation, welche
ehemals für ein anderes berühmtes Problem, das

”
Problem von Cramer-Castillon“,

erfunden wurde. Der vorliegende Artikel entspringt einer Einführungsvorlesung über
Geometrie.
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Fig. 1.1 The problem of Cramer-Castillon

see citation). Castillon arrived a third of a century later (1776) at a geometric solution.
Other geometric solutions were found by Euler (1783, see [6]) and by Ottaiano (at the age
of 16; see [4], p. 141). Throughout the 18th century this problem had the reputation of
being very difficult.

One night after Castillon’s presentation at the Academy of Berlin, Lagrange found an
analytic solution (see citations). This solution of Lagrange was simplified by Carnot (1803,
see [2]) and generalized to arbitrary n-polygons.

The Möbius transform.

Wenn man den schlichten, stillen Mann [Möbius] vor Augen hat, muss es einen einigermassen in
Erstaunen setzen, dass sein Vater . . . den Beruf eines Tanzlehrers ausübte. Um die Verschiedenheit
der Generationen vollends vor Augen zu führen, erwähne ich, dass ein Sohn des Mathematikers
der bekannte Neurologe ist, der Verfasser des vielbesprochenen Buches “Vom physiologischen
Schwachsinn des Weibes”. (F. Klein, Entw. der Math. im 19. Jahrh. (1926), p. 117)

The main tool used in our paper is the so-called Möbius transform u �→ v where

v = pu + q

ru + s
or

(
v

1

)
= const

(
p q
r s

) (
u
1

)
(1.1)

with p, q, r, s known quantities. The matrix is only significant up to a constant factor.

Carnot, in [2], discovered that the composition of two such transforms

u2 = p1u1 + q1

r1u1 + s1
, u3 = p2u2 + q2

r2u2 + s2
= pu1 + q

ru1 + s

where

(
p q
r s

)
=

(
p2 q2
r2 s2

) (
p1 q1
r1 s1

) (1.2)

is again a Möbius transform with the new coefficient matrix being the product of the
two coefficient matrices. An analogous result is true for the inverse operations, and the
transformations with ps − qr �= 0 form a group.

The map (1.1) is an involution, i.e., it’s own inverse, iff s = −p.
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Analytic solution of the Cramer-Castillon problem. The crucial discovery of Carnot
was the fact that the calculations become particularly simple, if the tangents of certain
half-angles are used as coordinates. This leads us to the “Pythagorean coordinates” on the
circle (which we suppose is of radius 1, see Fig. 1.2, left; see also [8], p. 124)

u = tan
α

2
, x = 1 − u2

1 + u2
, y = 2u

1 + u2
. (1.3)

The point (x, y) moves through the circle in a counter clockwise sense for −∞ < u < ∞
(and the values are connected to the famous Pythagorean triples (1 − u2, 2u, 1 + u2); from
there the name).

1−u2

1+u2
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1+u2

α
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α/2
1

(x, y)

A1

u1

u2

1

B1
B2

O

Fig. 1.2 The Pythagorean coordinates on a circle (left) and the involution of the circle with respect to a given
point A1 (right)

The idea is now the following: we start from an arbitrary point B1 with coordinate u1 and
compute its projection B2 onto the circle from the point A1 with given coordinates (a1, b1)

(see Fig. 1.2, right). We then compute B3, B4, . . . in a similar way and must finally satisfy
the condition Bn+1 = B1.

Computations: the collinearity of B1, B2 and A1 is characterized by

det




1−u2
1

1+u2
1

2u1
1+u2

1
1

1−u2
2

1+u2
2

2u2
1+u2

2
1

a1 b1 1


 = 0 , or det


 1 − u2

1 2u1 1 + u2
1

1 − u2
2 2u2 1 + u2

2
a1 b1 1


 = 0 ,

which, when multiplied out and divided by the trivial factor u2 − u1, gives

u2 = −b1u1 + 1 − a1

−(a1 + 1)u1 + b1
or

(
u2
1

)
= const

( −b1 1 − a1
−a1 − 1 b1

) (
u1
1

)
, (1.4)

a Möbius transform. Repeating this around the n-polygon of Fig. 1.1 and applying (1.2),
we see that we have to multiply all these matrices, and we arrive at the condition

un+1 = u1 = au1 + b

cu1 + d
,

where

(
a b
c d

)
=

( −bn 1 − an

−an − 1 bn

)
. . .

( −b1 1 − a1
−a1 − 1 b1

)
.

(1.5)
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Fig. 1.3 Two solutions of a problem of Cramer-Castillon

This represents a quadratic equation for u1 with usually two solutions (see example in
Fig. 1.31).

The creation of projective geometry and the Möbius transform.
Die durch den Ponceletschen Traité eingeleitete Bewegung pflanzte sich nach Deutschland fort
und ward einerseits von den Analytikern Moebius (1790–1868) und Plücker (1801–1868) und
andererseits von den Synthetikern Steiner (1796–1863) und von Staudt (1798–1867) weitergeführt.

(F. Klein, Vorl. nicht-euklidische Geometrie (1927), p. 11)

It is now fantastic to see, how the above problem and its solution, which had haunted the
greatest minds for centuries, became absolutely natural with the invention of projective
geometry. This subject originated from the epoch-making book of Poncelet [12]. Möbius
then (in [9] and more explicitly in [10]) showed that the adequate analytical tool for de-
scribing a one-dimensional “Collineations-Verwandtschaft” were precisely formulas of the
type (1.1), which with the operation (1.2) constitute the Möbius group. Finally, Steiner
(in 1832, see [3], p. 75f) extended projective coordinates to conics. Then the projection
B1 �→ B2, as well as u1 �→ u2, must be projective maps, even involutions. At the end, the
problem consists in finding the fixed points of the involution u1 �→ un+1. For this task,
Steiner (in 1833) has found a construction using the ruler alone (see [4], §59 and §33; see
also M. Berger [1], vol. 2, p. 280).

2 Billiard in an ellipse
Suppose we have a billiard table in elliptical form with focuses A and B (see Fig. 2.1, left).
A fundamental property (already known to Apollonius) of ellipses is that a ball leaving a
focus is reflected into the other focus. To see this, we use the fact that �1 + �2 = const: an
infinitesimal movement of P by a quantity ds (see Fig. 2.1, right) leads to d�1 = −d�2
and the two angles noted α are the same.

Problem. Given the angle ϕ1 under which the ball leaves A (or B), find the angle ϕ2 under
which the ball arrives in B (or A). What happens to ϕ3, ϕ4, etc.?

Solution. Put
ci = cos ϕi . (2.1)

1The author is grateful to his colleague F. Sigrist (Neuchâtel) for suggesting such an example.
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Fig. 2.1 Billiard in an ellipse (left); variation of ϕ1, ϕ2 and �1, �2 (right).

We suppose that the focuses are located at −1 and 1 and that e is the eccentricity of the
ellipse. Hence the major semi-axis is a = 1

e . If x is the abscissa of P , then 2

�1,2 = a ± ex = 1

e
± ex .

Now, by definition of the cosine,

c1 = x + 1

ex + 1
e

, c2 = x − 1

−ex + 1
e

,

which represent Möbius transformations. We invert the first one and insert into the second:
(

1 −1
−e 1

e

) (
1 1
e 1

e

)−1

= const ·
(

1 −θ

−θ 1

)
where θ = 2e

e2 + 1
.

Hence the solution is given by the Möbius transform

c2 = c1 − θ

−θ c1 + 1
with the matrix A =

(
1 −θ

−θ 1

)
. (2.2)

The subsequent angles ϕ3, ϕ4, etc. are determined by the powers of the matrix A. This
matrix has eigenvectors

(1
1

)
and

(−1
1

)
with eigenvalues 1 ∓ θ . In non trivial situations (i.e.,

the ellipse is not a circle and ϕ1 �= 0) the cosines ci will converge to the eigenvector with
maximal eigenvalue, i.e., to −1 (see e.g., [11], §4), and the angles ϕi converge to π .

Remark. The above results, without using the relations to Möbius transforms and matri-
ces, were proved in [7].

2Remember the fact that �1,2 are proportional by a factor e to the distances of P to two fixed lines (directrix).
According to Zeuthen, this was a discovery of Euclid (see [3], p. 69).
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3 Urquhart’s ‘most elementary’ theorem of Euclidean geometry
“Urquhart considered this to be the ‘most elementary’ theorem, since it involves only the concepts
of straight line and distance. The proof of this theorem by purely geometrical methods is not
elementary. Urquhart discovered this result when considering some of the fundamental concepts
of the theory of special relativity.” (D. Elliot, J. Australian Math. Soc. (1968), p. 129)
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Fig. 3.1 Urquhart’s theorem

M.L. Urquhart (1902–1966) was a highly appreciated lecturer of mathematics and physics
at several Australian universities; he communicated his mathematical discoveries only to
some of his friends. The following theorem became known by his obituary notice [5] and
gained wider popularity through the book [13].

Theorem. Let the points A, B, P, Q, R, S lie on straight lines as sketched in Fig. 3.1
(left), then

AP + P B = B R + R A implies AQ + QB = BS + S A . (3.1)

Proof . The conditions in (3.1) mean that the points P , R, as well as Q, S, lie on two
confocal ellipses with focuses A and B (Fig. 3.1, right). The “billiards” of these ellipses
are determined by formula (2.2), the eccentricity (i.e., the θ ) being different. Hence, the
trajectories

A �→ P �→ B �→ S �→ A and A �→ Q �→ B �→ R �→ A

return under the same angle ϕ3 to A, because the matrices(
1 −θ

−θ 1

)
and

(
1 −ψ

−ψ 1

)

commute. �

Corollary. Under the hypotheses of Urquhart’s theorem, we have also 3

AP

P B
· BS

S A
= AQ

QB
· B R

R A
. (3.2)

3This corollary requires to understand not only addition, but also multiplication and division. We may there-
fore call it “the second most elementary theorem”.
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Proof. We see from the pictures in Fig. 2.1 (right) that

dϕ1 · �1 = ds · cos α = dϕ2 · �2 ⇒ dϕ2

dϕ1
= �1

�2
= AP

P B
.

If we now move all four points P , Q, R, S in Fig. 3.1 simultaneously, then the deriva-
tive dϕ3

dϕ1
resulting from the two different trajectories must give identical results. This

proves (3.2). �

Acknowledgement. The author is grateful to his colleague Pierre de la Harpe for having
drawn his attention to Urquhart’s theorem and to Tabachnikov’s beautiful book. Mr. Stanis-
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