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1 Introduction
The regular heptagon (i.e., the planar regular convex polygon with seven vertices) has not
been studied extensively like its cousins the equilateral triangle, the square, the regular
pentagon, and the regular hexagon. Perhaps the reason is because this is the regular poly-
gon with the smallest number of vertices that cannot be constructed only with compass
and straightedge. The few sporadic known results on regular heptagons were reviewed by
Leon Bankoff and Jack Garfunkel 30 years ago in the reference [1].

They first recall the following result by Victor Thébault:

The distance from the midpoint U of the side AB of a regular convex heptagon
ABC DE FG inscribed in a circle with center O to the midpoint V of the
radius perpendicular to BC and cutting this side, is equal to half the side of
a square inscribed in the circle.

.

In der ebenen Geometrie nimmt das Studium der regelmässigen Vielecke einen
herausragenden Platz ein. Speziell dem gleichseitigen Dreieck, dem Quadrat, dem
regelmässigen Pentagon oder Hexagon kommt eine besondere Bedeutung zu, da man
diese Polygone mit Hilfe von Zirkel und Lineal konstruieren kann und Eigenschaf-
ten dieser Vielecke ebenfalls auf elementare Weise nachweisen kann. Wie verhält es
sich nun aber mit dem regelmässigen Siebeneck? Dieses ist bekanntlich nicht mit Zir-
kel und Lineal konstruierbar, also wird es auch erheblich schwieriger sein, Eigen-
schaften von regelmässigen Siebenecken elementar zu beweisen. Im nachfolgenden
Beitrag entdeckt der Autor interessante Eigenschaften eines regelmässigen Heptagons
ABC DE FG unter Zuhilfenahme des Computeralgebra-Systems Maple V. Dabei zei-
gen sich unerwartete Phänomene, z.B. in Bezug auf Inkreis und Ankreis des Dreiecks
ABG. Die entsprechenden Programme sind in einem Anhang angeführt.
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Fig. 1 Regular heptagon ABC DE FG and one of its heptagonal triangles AB D
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Fig. 2 Illustration of two results by Victor Thébault

In other words, we have |U V | = |AO| √2
2 . Extending this to diagonals, Hüseyin Demir

observed that the circle km of radius U V , centered at V , bisects the segments AB , BG,
E A, G D, C E and DC in the midpoints U , X , Y , Y ′, X ′ and U ′ (see the left part of Fig. 2).
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The right part of Fig. 2 shows the second result also by Thébault:

If W is the midpoint of O F, M is the point diametrically opposite to F and J
is the point on U B produced such that |U J | = |U M|, then |U W | = |U O|√2,

|O J | = |AO|√6
2 and the line U V is tangent to the circle through U, O and W.

The rest of [1] is a study of the heptagonal triangle (for example, the triangle AB D in
Fig. 1) whose angles are π

7 , 2π
7 and 4π

7 radians. We mention only the following four of
their properties from an extensive list (see pages 14, 17, and 19 of [1]):

• The sum of cotangents of angles is equal to
√

7.

• The sum of squares of cotangents of angles is equal to 5.

• The triangle formed by joining the feet of the internal angle bisectors of the hepta-
gonal triangle is isosceles.

• The two tangents from the orthocenter to the circumcircle of the heptagonal triangle
are mutually perpendicular.

Today we can add new results to the above list with some help from computers. In papers
[2], [3], and [4] the author has improved some of the above theorems. We added six more
midpoints of segments in Demir’s observation that also lie on the circle km in [2]. Later
in [4] we recognized two regular heptagons inscribed in km whose vertices are these mid-
points. The reference [3] contains the improvement of the second Thébault result above
and some new geometric relationships in regular heptagons.

In this paper we show that the intersections of many lines associated to a regular heptagon
ABC DE FG lie on its interesting circles determined either by incenters or by the excen-
ters of the triangles DE B and ABG. In other words, we discover many regular heptagons
related to a given regular heptagon which all have easy construction with compass and
straightedge.

Recall that every triangle ABC has the incircle and three excircles which touch the lines
BC , C A and AB . Their centers are the incenter I and the excenters Ia , Ib and Ic. The
incenter is inside while the excenters are outside the triangle and in the natural order Ia is
called the first excenter since it lies on the first angle bisector AI .

In order to simplify our statements we use the following notation: The parallel and the
perpendicular to the line � through the point X are X ‖ � and X ⊥ �.

In our proofs we shall use complex numbers because they provide simple expressions and
arguments. There are several excellent books, for example [7], [5], [9], [6], [10], and [8],
that give introductions into the method which we utilize. In an appendix we implement
this approach in Maple V. The reader can see there how the intersection of two lines is
computed. This is in fact the only thing to learn.

A point P in the Gauss plane is identified with a complex number P (its affix). The com-
plex conjugate of P is denoted P̄ . We shall always assume that the complex coordinates of
the vertices of the heptagon ABC DE FG are A = 1, B = f 2, C = f 4, D = f 6, E = f 8,
F = f 10, and G = f 12, where f is a 14th root of unity. Had we used the 7th roots of unity
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some important points like the midpoints P and Q of the shorter arcs AG and AB would
have complicated affices. Hence, all these points are on the unit circle k whose center is
the origin O.

2 The first circle from incenters

We begin our study with the circle m whose center is the incenter V of the triangle ABG
and which goes through the incenter U of the triangle B E D.
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Fig. 3 The circle m with the center at the incenter of ABG and
the radius

√
2 has interesting properties (Theorems 1–3)

Theorem 1. The circle m has the radius
√

2 and it goes through the points C and F.

Let K = I N ∩ J M where the points I , N and J , M are intersections of BC , E F and FG,
C D with G ⊥ GO and B ⊥ B O.

Theorem 2. The points I , J , M and N are on the circle m and the point V is the midpoint
of the segment K O.

Theorem 3. The triangles B I K , G J K , BC M, FG N are heptagonal.

Proof of Theorems 1–3. The points P and Q are f 13 and f . Note that |BC| = |C D| so
that �B EC = �C E D. It follows that EC is the bisector of the angle E in the triangle
B DE . In the same way we see that the line DG is the bisector of the angle D in the
triangle B DE and that B P , G Q and AO are the bisectors of the angles B , G and A in
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the triangle ABG. The incenters U and V are therefore the intersections C E ∩ DG and
B P ∩ G Q. Hence, U = − f 5 + f 4 − 1 and V = f 2 − f 3 + f 4 − f 5. The equation of
the circle m with the center V and the radius

√
2 is (z − V )(z − V ) = 2 or

z z̄ + f 2 ( f − 1)( f 2 + 1)(z + z̄) + f 5 − 2 f 4 + 2 f 3 − f 2 − 1 = 0.

When we substitute the coordinates of the points C , F , and U for z into this equation we
obtain an expression that has the polynomial p− = f 6 − f 5 + f 4 − f 3 + f 2 − f + 1
as a factor. Since f 14 − 1 factors as ( f − 1)( f + 1) p− p+, with p+ = f 6 + f 5 + f 4 +
f 3 + f 2 + f + 1 and p+ = 1 + 2 i (1 + 2 cos π

7 ) sin 2 π
7 �= 0, we see that p− = 0 so that

the points C , F , and U are on the circle m.

In order to find the affix of the point I (the intersection of the line BC with the perpendi-
cular G ⊥ GO to the line GO in G) notice that BC has the equation

( f 5 − f 3) z − ( f 4 − f 2) z̄ + f 5 + f 2 = 0

while the equation of G ⊥ GO is

f 2 z − f 5 z̄ − 2 = 0.

Now we must solve in z and z̄ the system formed by these two equations in order to obtain
I = f + f 2 − f 5. For the points J , M , and N we get similarly

J = Ī , M = f 4 − f 3 + f 2 + f − 1, and N = M̄.

Once we know the points I , J , M , and N the rest of the proof is a routine verification.
The substitution of their coordinates into the equation of the circle m always contain the
factor p− which is zero. Notice that the lines I N and J M are tangents of the circle k.
Finally, solving linear equations we can compute the affix of the intersection K = 2 V of
these tangents. Clearly, the point V is the midpoint of the segment K O. Then we look
for conditions (see [5] and the appendix) that the triangles J K G and F NG are directly
similar to the heptagonal triangle DEG and that the triangles I K B and C M B are reversely
similar to the heptagonal triangle DEG. In all four cases the above factor p− of f 14 − 1
(which is zero) appears. �

3 Three regular heptagons inscribed in m

In the next two theorems we shall describe three regular heptagons inscribed in the circle
m whose easy constructions with compass and straightedge depend on the points I , J , M
and N .

Theorem 4. Let the points H , J ′, S, U ′, H ′, I ′, S′ be intersections of AP, AC, CG,
B E, B F, AF, DG with B E, N ‖ FG, K ‖ AG, M ‖ C E, K ‖ CG, K ‖ B F, M ‖ CG,
respectively. Then FU M H I J ′S and NU ′C H ′ I ′ J S′ are regular heptagons inscribed in
m (see Fig. 4). The point H lies also on N ‖ B F and U ′ is the incenter of the triangle
DEG.
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Fig. 4 The regular heptagons FU M H I J ′S and NU ′C H ′ I ′ J S′
inscribed in the circle m (Theorem 4)

Theorem 5. The midpoints B0, A0, G0, F0, E0, D0, and C0 of the shorter arcs N F, U ′U,
C M, H H ′, I ′ I , J J ′, and SS′ are vertices of a regular heptagon whose sides are parallel
to the corresponding sides of B AG F E DC (see Fig. 5).

Proof of Theorems 4 and 5. The equations of the lines AP and B E are

(1 − f )z + ( f 13 − 1)z̄ + f − f 13 = 0

and
( f 12 − f 6)z + ( f 8 − f 2)z̄ + f 8 − f 20 = 0.

Their intersection H is − f 5 + 2 f 4 − f 3 + 2 f 2 − f + 1. Also,

J ′ = −2 f 5 + 2 f 4 − 2 f 3 + f 2 + 1, S = −2 f 5 + f 4 − 2 f 3 + 2 f 2 − f,

I ′ = − f 5 + 2 f 4 − 2 f 3 + 2 f 2 + 1, H ′ = − f 5 + f 4 + f 2 + f − 1,

U ′ = − f 3 + f 2 − 1, S′ = − f 5 − f 3 + f.

Let us define the number w to be f − f 2 − f 4. Then |S′V |2 = (S′ − V )(S̄′ − V̄ ) =
w(1 − w) is equal to 2. In the same way we verify that |H V |2, |J ′V |2, |SV |2, |U ′V |2,
|H ′V |2, and |I ′V |2 are also 2 so that the heptagons FU M H I J ′S and NU ′C H ′ I ′ J S′ are
inscribed in m. That these are regular heptagons follows from the fact that |FU |2, |U M|2,
|M H |2, |H I |2, |I J ′|2, |J ′S|2, |SF |2, |NU ′|2, |U ′C|2, |C H ′|2, |H ′I ′|2, |I ′ J |2, |J S′|2, and
|S′N |2 all have the same value 2 f 5 − 2 f 2 + 4.
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Fig. 5 The regular heptagon on midpoints of shorter arcs N F , U ′U , C M , H H ′, I ′ I , J J ′,
and SS′ has sides parallel to the corresponding sides of B AG F E DC (Theorem 5)

In order to find the midpoint B0 of the shorter arc F N we use that it has equal dis-
tances from the points F and N , that it lies on m, that its distance to the point F is less
than

√
2 (the radius of m) and that it is a polynomial of order at most five in f . Hence,

B0 = − f 5 + f 4 − f 3 + (1 − √
2) f 2. Similarly,

A0 = − f 5 + f 4 − f 3 + f 2 − √
2, C0 = − f 5 − (1 − √

2) f 4 − f 3 + f 2,

D0 = (1 + √
2)(1 − f )( f 4 + f 2 + 2 − √

2), E0 = D0, F0 = C0, G0 = B0.

It is now easy to check that the regular heptagons B0 A0G0 F0 E0 D0C0 and B AG F E DC
have parallel corresponding sides. �

4 Four inscribed regular heptagons

In this section we describe four regular heptagons inscribed in the circumcircles of the
triangles B I K , G J K , FG N and BC M and show that their centers are vertices of a rect-
angle.

Theorem 6. Let D1, C1, B1, G1, G2, D2, C2, B2, B3, G3, F3, E3, A4, E4, D4, C4 be in-
tersections of EG, B F, CG, AG, AG, EG, DG, CG, AB, B F, B E, B D, AB, B D, B E,
B F with C F, DG, AF, F ‖ BC, K ‖ FG, J ‖ DE, J ‖ B F, N ‖ BC, K ‖ BC, I ‖ E F,
I ‖ AB, I ‖ BG, C ‖ FG, C F, CG, AC. Then N F D1C1 B1GG1, GG2 K J D2C2 B2,
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Fig. 6 Four regular heptagons inscribed in circumcircles of
the triangles FG N , G J K , B I K , BC M (Theorem 6)

I K B3 BG3 F3 E3, and B A4MC E4 D4C4 are regular heptagons inscribed in the circum-
circles of FG N, G J K , B I K , and BC M whose sides are parallel to the corresponding
sides of F E DC B AG, AG F E DC B, DC B AG F E, and B AG F E DC (see Fig. 6).

Proof. The circumcenter O1 of the triangle FG N is −f 5+ f 4− f 3 and the equation of
its circumcircle m1 is

( f 4 + f 2 + 1)z z̄ − f 4( f 2 + 1)(z + f 8 z̄) + f 16 = 0.

The points D1, C1, B1, G1 are − f 5+ f 4− f 2, − f 5+ f 4− f 3+ f −1, − f 5+2 f 4−2 f 3+
f 2 − f +1, − f 5 + f 4 − f 3 − f 2 + f , respectively. As the expression f 2n(N − O1) + O1,
for n = 1, . . . , 6 is G1, G, B1, C1, D1, and F , we infer that N F D1C1 B1GG1 is a regular
heptagon inscribed in m1. That its sides are parallel with the corresponding sides of the
heptagon F E DC B AG is now easy to verify. The remaining three circumcircles of the
triangles G J K , B I K , and BC M are treated similarly. �

Theorem 7. The circumcenters O1, O2, O3, O4 of the triangles FG N, G J K , B I K ,
and BC M are vertices of a rectangle – the translation for the vector �OV of the rectangle
P1G B Q1 where P1 and Q1 are the midpoints of the shorter arcs E F and C D (see Fig. 7).

Proof. Notice that P1 = f 9, Q1 = f 5, O2 = −2 f 5 + f 4 − f 3 + f 2, O3 = − f 5+ f 4 −
f 3+2 f 2 and O4 = f 4 − f 2 + f 2. The claim follows from P1 + V = O1, G + V = O2,
B + V = O3 and Q1 + V = O4. �
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Fig. 7 The circumcenters of the triangles FG N , G J K ,
B I K , BC M are vertices of a rectangle (Theorem 7)

5 The second circle from excenters

Since the circle m is determined by the incenters of the triangles DE B and ABG, we can
ask if the excenters of these triangles give a circle containing intersections of some lines
related to the regular heptagon ABC DE FG. The answer to this natural question is given
in the following theorems.

Theorem 8. Let U0 and V0 be the first excenters of the triangles DE B and ABG in the
regular heptagon ABC DE FG inscribed to the circle k with the center O and the radius

R. Then the circle n with the center V0 and the radius
R
√

2 cos 3 π
14

sin π
14

goes through the points

U0, I and J (see Fig. 8).

Proof. Since the excenter V0 is the intersection of lines AO and G ⊥ GV we get

V0 = f 5 − f 4 + f 3 − f 2 − 2.

Similarly, the excenter U0 is the intersection of the lines DG and E ⊥ EU so that U0 =
− f 5 − f 4 + 1. The equation of the circle n with the center at the point V0 through
the point U0 is z z̄ − V0(z + z̄) + 7 f 5 − 2 f 4 + 2 f 3 − 7 f 2 − 9 = 0. Its radius is
√

14 − 10 f 5 + 4 f 4 − 4 f 3 + 10 f 2 which reduces to
√

2 cos 3 π
14

sin π
14

. By substitution of co-

ordinates of the points I and J in the above equation we can verify that they lie on the
circle n. �
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Fig. 8 The circle n determined by excenters U0 and V0 and two
regular heptagons inscribed in it (Theorems 8 and 9)

Theorem 9. Let the points G5, F5, E5, D5, C5, B5, G6, F6, E6, D6, C6, B6 be intersec-
tions of BG, D ⊥ DO, FG, JU, J M, I ⊥ F I , J ⊥ C J, I N , CV0, J V , E ⊥ E O, BG
with FU, V0 ‖ F M, D ‖ BU, U0 ‖ I M, D ⊥ C D, U ⊥ U V , E ‖ B P, E ⊥ E F, I ‖ AE,
E ⊥ C E, J ‖ M Q, D ⊥ DO. Then I G5 F5 E5 D5C5 B5 and J G6 F6 E6 D6C6 B6 are regu-
lar heptagons inscribed in n (see Fig. 8). The midpoints A7, G7, F7, E7, D7, C7, B7 of the
shorter arcs I J , G5G6, F5 F6, E5 E6, D5 D6, C5C6, B5 B6 are vertices of a regular hep-
tagon whose sides are parallel to the corresponding sides of AG F E DC B (see Fig. 10).

Proof. Solving linear equations we get G5 = −2 f 5 − 2 f 3 + f 2 − 2 f + 1, F5 = −3 f 4 −
2 f 2 − f − 2, E5 = 2 f 5 − 2 f 4 + f 3 − 4 f 2 − 4, D5 = 3 f 5 − f 4 + 2 f 3 − 2 f 2 − 5,
C5 = 4 f 5 − f 4 + 3 f 3 − f 2 + f − 3, B5 = f 5 + 3 f 3 + f − 1, G6 = B5, F6 = C5,
E6 = D5, D6 = E5, C6 = F5 and B6 = G5. Since the expressions f 2k(I − V0) + V0
and f 2k(J − V0) + V0 for k from 1 to 6 are B5, C5, D5, E5, F5, G5 and B6, C6, D6, E6,
F6, G6 we conclude that I G5 F5 E5 D5C5 B5 and J G6 F6 E6 D6C6 B6 are regular heptagons
inscribed in n.

Let η =
√

14
7 . As in the proof of Theorem 5 we find

A7 = (1 − 3 η)
(

f 5 + 1 + 14 η

11
f 3( f − 1) − f 2 − 2

)
,

B7 = f 5 − (1 − 2 η) f 4 + (1 + η) f 3 − (1 − 5 η) f 2 + η f − 2(1 − η).
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The condition for the lines AB and A7 B7 to be parallel (which must be zero) holds because
it contains p− as a factor. Since A7 B7C7 D7 E7 F7G7 is obviously a regular heptagon it
follows that its sides are parallel with the corresponding sides of ABC DE FG. �
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Fig. 9 Another two easily constructible regular heptagons
inscribed in the circle n (Theorem 10)

Theorem 10. Let the points C8, B8, A8, G8, F8, E8, D9, C9, B9, A9, G9, F9, E9 be inter-
sections of AG, B E, E J , I M, CG, B F, CG, B F, J N, DI , DG, AB, B E with J ⊥ J M,
F I , I V0, J ‖ C Q, FU, E ⊥ E F, J ⊥ J V , D ‖ FO, U0 ‖ B D, J V0, C J , N ‖ C O, CV0.
Then U0C8 B8 A8G8 F8 E8 and D9C9 B9 A9G9 F9 E9 are regular heptagons inscribed in n
(see Fig. 9). The midpoints D10, C10, B10, A10, G10, F10, E10 of the shorter arcs U0 D9,
C8C9, B8 B9, A8 A9, G8G9, F8 F9, E8 E9 are vertices of a regular heptagon whose sides
are parallel to the corresponding sides of DC B AG F E (see Fig. 10).

Proof. From the linear equations we get C8 = −2 f 5 − f 4 − f 3 − f 2 − f − 1, B8 =
f 5 − 2 f 4 − f 3 − 2 f 2 − f − 3, A8 = 3 f 5 − 2 f 4 + 2 f 3 − 3 f 2 − f − 4, G8 =
4 f 5 − 2 f 4 + 4 f 3 − 3 f 2 + 2 f − 5, F8 = 2 f 5 + f 4 + 2 f 3 + f − 2, E8 = f 3 + 2 f 2,
D9 = E8, C9 = F8, B9 = G8, A9 = A8, G9 = B8, F9 = C8 and E9 = U0. Since
f 2k(U0 − V0) + V0 and f 2k(D9 − V0) + V0 for k from 1 to 6 are E8, F8, G8, A8, B8, C8
and E9, F9, G9, A9, B9, C9 we conclude that U0C8 B8 A8G8 F8 E8 and D9C9 B9 A9G9 F9 E9
are regular heptagons inscribed in n.

This time we get

A10 = (1 + 3 η)
(

f 5 + 1 − 14 η

11
f 3( f − 1) − f 2 − 2

)
,
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B10 = f 5 − (1 + 2 η) f 4 + (1 − η) f 3 − (1 + 5 η) f 2 − η f − 2(1 + η).

The condition for the lines AB and A10 B10 to be parallel again holds because it contains
p− as a factor. Since A10B10C10 D10 E10 F10G10 is obviously a regular heptagon it follows
that its sides are parallel with the corresponding sides of ABC DE FG. �
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Fig. 10 Two regular heptagons on midpoints of shorter arcs inscribed in the
circle n and the regular 14-gon from their vertices (Theorems 8–11)

Theorem 11. The points A7, D10, G7, C10, F7, B10, E7, A10, D7, G10, C7, F10, B7, E10
are the vertices of the regular 14-gon (see Fig. 10).

Proof. Since A10 = f (D7 − V0) + V0, it follows that by rotating D7 for the angle of π
14

radians we get A10. This implies the claim of the theorem. Notice that the regular hep-
tagons A7 B7C7 D7 E7 F7G7 and A10 B10C10 D10 E10 F10 F10 are symmetric with respect to
the perpendicular at O to the line O A. �
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Appendix
This note is an example of a new approach to geometry offered by computers. In this appendix we will reveal
how one can check our results on a computer.

The figures are made in the software The Geometer’s Sketchpad that could also be used for approximate verifi-
cation of statements and in the discovery of new theorems about geometric objects like regular heptagons.

Our mathematically correct proofs where realized on a computer in the software Maple V (version 8). We will
describe how to prove Theorems 1–3 in Maple V.

First we give points as ordered pairs [p, q] of a complex number p and its conjugate q. The complex number f
is the 14th root of unity.

hA:=[1,1]:hB:=[fˆ2,fˆ12]:hC:=[fˆ4,fˆ10]:hD:=[fˆ6,fˆ8]:
hF:=[fˆ8,fˆ6]:hE:=[fˆ10,fˆ4]:hG:=[fˆ12,fˆ2]:hO:=[0,0]:
hP:=[fˆ13,f]: hQ:=[f,fˆ13]:

Here we use hA instead of A as a name of the first vertex because with plain letters we run into problems as some
letters are reserved in Maple V (for example D).

We introduce the shortening FS for the simultaneous use of commands factor and simplify to reduce
typing.

FS:=x->factor(simplify(x)):

The following function computes the square of the distance between two points a and x .

di:=(a,x)->FS((a[1]-x[1])*(a[2]-x[2])):

Lines are represented as ordered triples [u, v, w] of coefficients of their equations u z + v z̄ + w = 0. The func-
tion li gives the line through two different points.

li:=(a,b)->FS([a[2]-b[2],b[1]-a[1],a[1]*b[2]-a[2]*b[1]]):

The function ins gives the intersection of two lines. (The names in and int are reserved!). When its usage
results in the error message

Error, numeric exception: division by zero

then the lines are parallel (when they do not have an intersection).

ins:=(p,q)->FS([(p[2]*q[3]-p[3]*q[2])/(p[1]*q[2]-p[2]*q[1]),
(p[3]*q[1]-p[1]*q[3])/(p[1]*q[2]-p[2]*q[1])]):

This short introduction into analytic plane geometry via complex numbers concludes with the simple functions
for the midpoint of two given points and the parallel and the perpendicular through a given point to a given line.

mid:=(a,b)->FS([(a[1]+b[1])/2,(a[2]+b[2])/2]):
par:=(t,p)->FS([p[1],p[2],-t[1]*p[1]-t[2]*p[2]]):
per:=(t,p)->FS([p[1],-p[2],t[2]*p[2]-t[1]*p[1]]):
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The points U and V are now obtained as follows:

hU:=ins(li(hC,hE),li(hD,hG)):hV:=ins(li(hB,hP),li(hG,hQ)):

The circle m is the locus of all points whose square of distance to the point V is equal to 2. The following function
hm associates to a point the difference of the square of its distance from V and 2. A point T will lie on the circle
m if and only if the value hm(T ) is zero.

hm:=x->FS(di(x,hV)-2):

We check now the values of hm in the points C , F , and U .

hm(hC); hm(hF); hm(hU);

The output for the first two inputs is p− K where K is

f 18 − f 17 − f 15 + f 14 − f 13 + f 12 − 2 f 11 + f 10 − f 9 + 3 f 8 + f 7 − f 5 + f 4 − 2 f − 2,

while for the third it is p− M
N2 where N = ( f 2 + f + 1)( f 2 − f + 1) and

M = − 2 − 2 f − 9 f 19 − 3 f 11 − 4 f 3 − 7 f 5 − 10 f 15 + 11 f 14

− 11 f 17 + 9 f 16 − 3 f 23 − 6 f 21 − 4 f 2 − f 25 + f 26 + 9 f 10 − 4 f 9

+ 4 f 8 − 5 f 7 − f 6 + 7 f 18 + 5 f 20 + 4 f 22 + 3 f 24 − 5 f 4 + 13 f 12 − 7 f 13.

Since all of these expressions contain p− as a factor we infer that they are equal to zero.

The points I , N , J , M, and K are defined as follows:

hI:=ins(li(hB,hC),per(hG,li(hG,hO))):
hN:=ins(li(hE,hF),per(hG,li(hG,hO))):
hJ:=ins(li(hF,hG),per(hB,li(hB,hO))):
hM:=ins(li(hC,hD),per(hB,li(hB,hO))):
hK:=ins(li(hI,hN),li(hJ,hM)):

We compute the values of hm in the points I , N , J , and M to verify that they lie on the circle m. Next we find
the midpoint of the segment K O and show that it is at the distance zero from the point V .

hm(hI); hm(hN); hm(hJ); hm(hM); di(hV,mid(hK,kO));

For the last claim we will use the following functions that test if two triangles are directly or reversely similar
(see [5]).

sid:=((a,b,c),(p,q,r))->FS(a[1]*q[1]-a[1]*r[1]-b[1]*p[1]+
b[1]*r[1]+c[1]*p[1]-c[1]*q[1]):

sir:=((a,b,c),(p,q,r))->FS(q[2]*a[1]-r[2]*a[1]-p[2]*b[1]+
r[2]*b[1]+c[1]*p[2]-q[2]*c[1]):

sid((hD,hE,hG),(hJ,hK,hG)); sid((hD,hE,hG),(hF,hN,hG));
sir((hD,hE,hG),(hI,hK,hB)); sir((hD,hE,hG),(hC,hM,hB));
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