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The theory of non-unique factorizations in integral domains and monoids is a very ac-
tive area of current research (see both [1] and [4] to view recent trends in this work). To
demonstrate the phenomena of non-unique factorizations, we consider a result from the
classical setting on uniqueness of factorizations by James and Niven [11]. We proceed as
follows: Let N represent the natural numbers and suppose that M ⊆ N is a multiplicative
semigroup. M is called a congruence semigroup if there exists a natural number n such

.

Im Hilbertschen Monoid 1+4N0 = {1, 5, 9, 13, . . .} (N0 = natürliche Zahlen inklusive
Null) ist die Zerlegung in irreduzible Faktoren nicht eindeutig: Es gilt zum Beispiel
441 = 9 · 49 = 21 · 21. Hilberts Monoid ist ein Beispiel einer Kongruenz-Halb-
gruppe. Ein klassisches Resultat von James und Niven besagt, dass in einer Kongruenz-
Halbgruppe M genau dann der Fundamentalsatz der Arithmetik gilt, wenn M aus allen
Zahlen besteht, die relativ prim zu einer festen Zahl n ∈ N sind. Die Autoren der
vorliegenden Arbeit untersuchen das andere Extrem, nämlich den Fall, wo M aus allen
Zahlen besteht, die nicht relativ prim zu einer festen Zahl n ∈ N sind. Sie zeigen, dass
in diesem Fall wenigstens die Anzahl der Primfaktoren bei der Zerlegung einer Zahl
eindeutig ist.
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that
x ∈ M and x ≡ y (mod n) for y ∈ N implies y ∈ M.

If M is as above, then we call n a modulus of definition of M . It follows directly from the
definition that a congruence semigroup M of modulus n is completely determined by n
and M ∩ {1, 2, . . . , n}. In a congruence semigroup M , we call an element x irreducible
if x cannot be written in the form yz where y and z are nonunits of M (note that M
possesses at most one unit, that being 1). The classic proof that all natural numbers can
be factored as a product of primes can be easily modified to show that each nonunit of
a congruence semigroup can be factored as a product of irreducible elements. In general,
such a semigroup is called atomic. The interested reader can find more information on
congruence semigroups in [8] and a review of basic algebra terminology in [10].

Examples of congruence semigroups can be found throughout the mathematical literature.
In particular, Davenport [7, p. 21] uses the “Hilbert monoid”

1 + 4N0 = {1, 5, 9, 13, 17, 21, . . .}
as an example of a multiplicative system where the Fundamental Theorem of Arithmetic
fails. To be precise, in this system,

441 = 21 · 21 = 9 · 49

and 9, 21 and 49 are all nonassociated irreducibles in 1 + 4N0.

Hence, it is reasonable to ask which congruence semigroups do satisfy the Fundamental
Theorem of Arithmetic. This question was answered by James and Niven in [11], where
they prove the following interesting result. We will require the following notation: if n ∈
N, then set

A(n) = { m | m ∈ N and gcd (m, n) = 1}
and B(n) = N − A(n).

Theorem (James and Niven [11]). Let M be a congruence semigroup. M has unique
factorization of elements into products of irreducible elements if and only if there exists
a positive integer n with M ∩ A(n) = A(n) and M ∩ B(n) = ∅. In other words, M has
unique factorization if and only if M consists of all elements relatively prime to a fixed
positive integer n.

An alternate proof of this theorem due to Halter-Koch (which uses the divisor theory of a
commutative cancellative monoid) can be found in [9]. As a byproduct of the theorem, we
point out that the modulus for a congruence semigroup is not unique. Notice that letting
n = 2 or 4 in the theorem produces the same semigroup. Hence, this M can be viewed
with modulus of definition 2 or 4. While the modulus is not unique, it is obvious that each
congruence semigroup has a unique minimal modulus.

We are struck by what happens in the other extreme suggested by the theorem (i.e., when
M consists of all elements not relatively prime to a fixed positive integer n). It turns out
that such an M also exhibits an interesting factorization property.
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Proposition. Let n = pn1
1 · · · pnk

k be a positive integer where the pi ’s are distinct primes
and the ni ’s positive integers. Set

M = {m ∈ N | gcd (m, n) �= 1}.
M is a congruence semigroup with minimal modulus n′ = p1 · · · pk which satisfies the
following factorization property: If x ∈ M and

x = y1 · · · ys = z1 · · · zt (∗)

where each yi and z j is irreducible in M, then s = t .

Proof. Since the product of two numbers not relatively prime to n is again not relatively
prime to n, M is closed under multiplication and is a multiplicative semigroup. It follows
directly from the hypothesis of the proposition and elementary number theory that M is a
congruence semigroup of modulus n. We show that M also has modulus n′ = p1 · · · pk .
Setting

M ′ = {m ∈ N | gcd (m, n′) �= 1}
we obtain, as above, that M ′ is a congruence monoid of modulus n′. For m ∈ N it follows
that gcd (m, n) �= 1 if and only if gcd (m, n′) �= 1. Hence M = M ′ and n′ is a modulus
of definition for M . We argue that this is the minimal modulus. Suppose M is defined by
some modulus d < n′. Then there exists an i such that pi � d . Now, by definition pi ∈ M ,
but note that pϕ(d)

i ≡ 1 (mod d) (where ϕ represents the Euler ϕ-function), and hence
1 ∈ M , a contradiction.

We now show that M satisfies (∗). By the definition of M , if x ∈ M , then x = pα1
1 · · · pαk

k w

where the αi ’s are nonnegative integers (with at least one nonzero) and w ∈ N with
gcd (w, n′) = 1. Define a function f : M → N by

f (x) =
k∑

i=1

αi .

It is easy to verify that for x and y ∈ M we have f (xy) = f (x) + f (y).

Claim: x ∈ M is irreducible in M if and only if f (x) = 1.

Proof of Claim: (⇒) Suppose that x ∈ M and f (x) > 1. Write x = pqk where p and q
are not necessarily distinct primes which divide n′ and k ∈ N. By definition, p, q and qk
are in M . Hence pqk = (p)(qk) and thus is not irreducible in M .

(⇐) Suppose x = pk where p is a prime divisor of n′ and gcd (k, n′) = 1. If x = yz
where y and z ∈ M , then 1 = f (x) = f (yz) = f (y) + f (z), which implies that either
f (y) or f (z) = 0, a contradiction.

Now, suppose that x ∈ M and

x = y1 · · · ys = z1 · · · zt

where each yi and z j is irreducible in M . Then f (x) =
s∑

i=1
f (yi ) =

t∑
i=1

f (zi ). Since each

f (yi) = 1 = f (zi ), we have that f (x) = s = t and the result follows. �
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We close with some comments concerning the proposition.

(1) An atomic semigroup (or monoid) which satisfies (∗) is called half-factorial. More
information on the half-factorial property can be found in [5].

(2) The James and Niven result indicates that the set of odd integers, when viewed as
a semigroup, has unique factorization. On the other hand, the proposition indicates
that the set of even integers is half-factorial. As the proof indicates, a non-unique
factorization in the set of even integers is given by

6 · 10 = 2 · 30,

where 2, 6, 10 and 30 are all irreducible as even integers.

(3) Not all half-factorial congruence semigroups are of the form M in the proposition.
The Hilbert Monoid, H = 1 + 4N0 is also half-factorial. To see this, notice that
x ∈ H is irreducible if and only if

(i) x is prime in N, or

(ii) x = q1q2 where q1 and q2 are not necessarily distinct primes in N which are
congruent to 3 (mod 4).

Hence, if x ∈ H is of the form

x = p1 · · · psq1 · · · qt

where each pi is a prime congruent to 1 (mod 4) and each q j is a prime congruent to
3 (mod 4), then any irreducible factorization of x in H has length s + t

2 (note that t
will necessarily be even). Half-factorial congruence semigroups which are also arithmetic
sequences have been characterized in [3, Theorem 2.6].

(4) To exhibit a congruence semigroup which is neither factorial nor half-factorial, let
M = 1 + 5N0. In M we have

81 · 2401 = 21 · 21 · 21 · 21

and each of 81, 2401 and 21 are irreducible in M . A good general reference on
monoids which do not satisfy the unique factorization property is [6].

(5) The function f in the proof of the proposition is known as a semi-length function on
M . The reader can find more information on semi-length functions in [2].
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