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1 Introduction

It seems that it is Ch. Babbage who first, yet at the beginning of the 19th century, wrote on
iterative roots explicitly. Given a mapping f : X → X and a positive integer n ≥ 2, the
problem is to find a mapping g : X → X such that the n-th iterate of g, the composition
gn of n copies of g, is f , i.e., to solve the functional equation

gn = f. (1.1)

In [1] Babbage studied (1.1) for f being the identity mapping. After him a lot of re-
sults concerning the general case of (1.1) in various settings have been proved. Many of
them can be found in the monographs [12] and [13] by M. Kuczma and M. Kuczma,
B. Choczewski, R. Ger, respectively, as well as in the book [19] by Gy. Targonski. Some
recent results have been presented in the survey papers [3] and [2].

.

Die Aufgabe, die n-te iterative Wurzel einer Abbildung f : X → X zu finden, besteht
darin, eine Funktion g : X → X so zu bestimmen, dass gn = g◦g◦. . .◦g = f (n-fache
Hintereinanderausführung) gilt. Für dieses Problem sind sowohl kombinatorische, als
auch analytische Resultate bekannt. So besitzt beispielsweise f : [0, 1] → [0, 1],
gegeben durch f (x) = 4x(1 − x), keine iterative Wurzel. Die Autoren untersuchen
in dieser Arbeit das analoge Problem für mengenwertige Abbildungen f : X → 2X .
Es zeigt sich, dass selbst Monotonie- und Stetigkeitsannahmen, die bei gewöhnlichen
Funktionen Existenz von Wurzeln sicher stellen, hierfür in diesem Fall im allgemeinen
nicht ausreichen.
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The purely combinatorial paper [10] by R. Isaacs gave a description of solutions to (1.1) for
an arbitrary bijection f . The case of general f was completely solved by G. Zimmermann,
Ph.D. student of Targonski, in her not well-known doctoral thesis [22] (see also [17] by
G. Riggert noticing that Zimmermann is the maiden name of Riggert).
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Fig. 1: Hat function Fig. 2: Parabola y = 4x(1 − x)

It turns out that even very simple and nice functions can have no roots. For instance, this is
the case if f is the so-called hat function, i.e. f (x) = min{2x, 2 − 2x} for x ∈ [0, 1] (see
Fig. 1) or f is the celebrated parabola y = 4x(1−x) for x ∈ [0, 1] (see Fig. 2). Of course,
lack of roots for these functions can be deduced from Zimmermann’s work. However, the
reader surely can give a short and quite elementary argument in both cases. The above
mentioned functions represent two important classes of mappings: piecewise monotone
functions and polynomials. As follows, from [5], even in the class of piecewise mono-
tone functions equation (1.1) leads to non-trivial questions. For f in this class sufficient
conditions for nonexistence and existence of roots can be found in [21]. For polynomials
the lack of roots is also a rather common phenomenon. A fundamental paper is [16] by
R.E. Rice, B. Schweizer and A. Sklar, published in the Monthly almost 25 years ago. The
answer to its title question “When is f ( f (z)) = az2 + bz + c?” is never. Similar results
concerning some other polynomials can be found in [7] and [8]. Nonexistence of roots,
both formal and holomorphic, was indicated by S. Bogatyi in his important article [6].

Difficulties appearing when solving equation (1.1), even in the class of continuous mono-
tone self-mappings of an interval, have been enlightened in the crucial paper [9] by
P.D. Humke and M. Laczkovich. Roughly speaking, they proved that the set of functions
having a root is an analytic but non-Borel subset of the space C([0, 1], R) endowed with
the sup-norm. The papers [18] and [4] by K. Simon and A. Blokh, respectively, show
that this set is small in C([0, 1], [0, 1]) both from the category (see [18, 4]) and measure-
theoretical (cf. [18]) points of view. Nonexistence of roots is typical also for some regular
functions (see [20]).

Recently some natural ideas of using set-valued functions have been examined (cf., for
instance, [14, 15, 11]). One can consider replacing single-valued functions by set-valued
functions in (1.1) both for f and g. It seems that up to now there are no notions leading to
a satisfactory result in such a case.
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In this paper we show that the phenomenon of lack of iterative roots appears also when
studying some set-valued functions with exactly one value not being a singleton. Even
imposing assumptions like continuity or strict monotonicity on the “single-valued parts”
of such a set-valued function does not guarantee the existence of its square roots (see
Example 2). This shows that maybe the situation for set-valued functions is even more so-
phisticated since those assumptions usually allow us to find roots in the single-valued case.

2 Main results
Given a set-valued function f : X → 2Y , the image f (A) of a set A ⊂ X is defined by

f (A) =
⋃

x∈A

f (x).

Then we can introduce the composition g ◦ f of set-valued functions f : X → 2Y and
g : Y → 2Z by the familiar formula

(g ◦ f )(x) = g( f (x)).

Clearly this operation is associative. So, for every positive integer n, we can define the n-th
iterate of g : X → 2X as the composition of n copies of g:

gn = g ◦ . . . ◦ g︸ ︷︷ ︸
n−times

.

Consequently, the problem of looking for solutions g : X → 2X to (1.1) for set-valued
functions f is posed in a proper way.

Remark that if g : X → 2X is an iterative root of f : X → 2X then f and g commute, i.e.
f ◦ g = g ◦ f . In fact, assume that gk = f for a positive integer k and fix an x ∈ X . If
z ∈ f (g(x)) then z ∈ f (y) for a y ∈ g(x), that is, z ∈ gk(g(x)) = g(gk(x)) = g( f (x)).
Conversely, if z ∈ g( f (x)) then z ∈ g(y) for a y ∈ f (x), so z ∈ g( f (x)) = g(gk(x)) =
gk(g(x)) = f (g(x)).

In what follows, we consider X as an arbitrary set and let #A denote the cardinality of a
subset A ⊂ X .

Proposition. Consider a set-valued function f : X → 2X and let g : X → 2X be its
iterative square root. If there is a point c ∈ X such that

(i) # f (x) = 1 for every x ∈ X\{c} and

(ii) f (x0) = {c} for an x0 ∈ X,

then #g(c) ≤ 1.

Proof . Suppose that

#g(c) ≥ 2. (2.2)

It follows from (i) that g has non-void values only. Fix a p ∈ g(x0). Then

g(p) ⊂ g(g(x0)) = f (x0) = {c},
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that is in fact g(p) = {c}, whence

f (p) = g(g(p)) = g(c).

Therefore, by (2.2) and (i), we get p = c. Thus, we have proved that g(x0) = {c}, which
gives

g(c) = g2(x0) = f (x0) = {c},
a contradiction to (2.2). �

Our main results are simple consequences of the proposition.

Theorem 1. Let f : X → 2X . If there are a point c ∈ X and a positive integer n such that
(i) and (ii) hold,

(iii) # f (c) > n, and

(iv) #{x ∈ X : f (x) = {y}} ≤ n for every y ∈ X,

then f has no iterative square roots.

Proof . Suppose that f has a square root g : X → 2X . By (i) and (iii) all the values of f
and consequently of g are non-void.

Firstly, we claim that

#g(x) ≤ n for x ∈ X\{c}. (2.3)

In order to see this, fix an x ∈ X\{c}. Take any v ∈ g(x). Since f (x) is a singleton and

f (x) = g(g(x)) =
⋃

u∈g(x)

g(u),

for every u ∈ g(x) we have g(u) = g(v), whence f (u) = f (v). This gives the inclusion

g(x) ⊂ {u ∈ X : f (u) = f (v)}. (2.4)

If g(x) is not a singleton then, according to (2.4) and (i), f (v) is a singleton, whence using
(2.4) again and (iv) we complete the proof of (2.3).

Since all the values of g are non-void, it follows from the proposition that g(c) = {u} with
a u ∈ X . Then g(u) = g2(c) = f (c), whence, by (iii), we have #g(u) > n. So, u �= c,
which contradicts (2.3). �

Theorem 2. Let f : X → 2X . If there is a point c ∈ X such that (i) and (ii) hold,

(v) # f (c) > 1, and

(vi) c ∈ f (c),

then f has no iterative square roots.

Proof . Suppose that f has a square root g : X → 2X . By (i) and (v) all the values of
g are non-void. Therefore, it follows from the proposition that g(c) = {u} for a u ∈ X .
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Then g(u) = g2(c) = f (c), whence, by (v), we have #g(u) > 1, implying that u �= c.
On account of (v) the set g(u) contains a point v ∈ X\{c}. Moreover, according to (vi),
c ∈ f (c) = g(u). Therefore, since

g(v) ∪ g(c) ⊂ g(g(u)) = f (u),

(i) gives g(v) = g(c). Consequently, f (v) = f (c), which contradicts (i) and (v). �

3 Examples
1. Consider f : [0, 1] → 2[0,1] given by

f (x) =






3
2 x, if x ∈ [0, 1

2 ),

[ 1
2 , 3

4 ], if x = 1
2 ,

x, if x ∈ ( 1
2 , 1].

Then assumptions (i)–(iv) in Theorem 1 are satisfied with c = 1/2 and n = 2. Conse-
quently, f has no square root.

2. There are some properties, like e.g. strict monotonicity, continuity, lack of fixed points
of f in the interior of its interval domain, which guarantee the existence of iterative
roots of single-valued functions (cf., e.g., [12, Chap. XV] and [13, Chap. 11]). For set-
valued functions the situation is more complicated, which can be seen by considering
f1 : [0, 1] → 2[0,1] and f2 : [0, 1] → 2[0,1] defined by

f1(x) =






5
3 x, if x ∈ [0, 1

2 ),

[ 2
3 , 5

6 ], if x = 1
2 ,

2
3 (x − 1) + 1, if x ∈ ( 1

2 , 1],

f2(x) =






4
3 x, if x ∈ [0, 1

2 ),

[ 2
3 , 5

6 ], if x = 1
2 ,

1
3 (x − 1) + 1, if x ∈ ( 1

2 , 1],
respectively. Both of them are upper semicontinuous and have no fixed points in (0, 1).
Moreover, f1|[0,1/2) and f1|(1/2,1] are both strictly increasing and the (single-valued) func-
tion f1|[0,1]\{1/2} is continuous. For f2 we have even more: f2|[0,1]\{1/2} is strictly increas-
ing and continuous. Nevertheless, by Theorem 1, where we take c = 1/2 and n = 3 − j
for f j ( j = 1, 2), both f1 and f2 have no square roots. Observe also that 1/2 /∈ f1(1/2)

and 1/2 /∈ f2(1/2), that is, condition (vi) is not satisfied. Consequently, Theorem 1 does
not follow from Theorem 2.

3. In the case of f3 as shown in Fig. 5 we have no roots again, as observed for n = 4.

4. The shape of the graph of f4 (see Fig. 6), given by

f4(x) =






1
2 x, if x ∈ [0, 1

2 ),

[ 1
4 , 3

4 ], if x = 1
2 ,

1
2 (x − 1) + 1, if x ∈ ( 1

2 , 1],
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Fig. 3: f1 with n = 2
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Fig. 4: f2 with n = 1
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Fig. 5: f3 with n = 4
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Fig. 6: f4 has roots

is similar to the graph of f2, but f4 has a square root. One can easily verify that g :
[0, 1] → 2[0,1], defined by

g(x) =






1√
2

x, if x ∈ [0, 1
2 ),

[ 1
2
√

2
, 1 − 1

2
√

2
], if x = 1

2 ,

1√
2
(x − 1) + 1, if x ∈ ( 1

2 , 1],

satisfies g2 = f . Observe, however, that Condition (ii) fails, where c has to be 1/2.

5. Consider the set-valued functions f5 : [0, 1] → 2[0,1] and f6 : [0, 1] → 2[0,1]
defined by

f5(x) =






3
2 x, if x ∈ [0, 1

2 ),

{ 1
2 , 3

4 }, if x = 1
2 ,

x, if x ∈ ( 1
2 , 1],
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f6(x) =






3
2 x, if x ∈ [0, 1

2 ),

[ 1
2 , 3

4 ], if x = 1
2 ,

1
2 , if x ∈ ( 1

2 , 3
4 ],

2(x − 1) + 1, if x ∈ ( 3
4 , 1],

respectively. Condition (iii) is not satisfied by f5 since c = 1/2, n = 2 and # f5(c) = 2.
For f6 condition (iii) is not satisfied because c = 1/2, n = ℵ0 and # f6(c) = ℵ0. However,
they both satisfy (v) and (vi). Theorem 2 shows that none of them has a square root.
Consequently, this also implies that Theorem 2 does not follow from Theorem 1.
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Fig. 7: f5 with n = 2
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Fig. 8: f6 with n = ∞
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[15] Powierża, T.: Higher order set-valued iterative roots of bijections. Publ. Math. Debrecen 61 (2002), 315–
324.

[16] Rice, R.E.; Schweizer, B.; Sklar, A.: When is f ( f (z)) = az2 + bz + c? Amer. Math. Monthly 87 (1980),
252–263.

[17] Riggert, G.: n-te iterative Wurzeln von beliebigen Abbildungen. Aequationes Math. 14 (1976), 208.

[18] Simon, K.: Some dual statements concerning Wiener measure and Baire category. Proc. Amer. Math. Soc.
106 (1989), 455–463.

[19] Targonski, Gy.: Topics in iteration theory. Vandenhoeck and Ruprecht, Göttingen 1981.

[20] Zhang, W.: A generic property of globally smooth iterative roots. Sci. China Ser. A 38 (1995), 267–272.

[21] Zhang, W.: PM functions, their characteristic intervals and iterative roots. Ann. Polon. Math. 65 (1997),
119–128.
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