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1 Introduction

It is well-known that a class of “almost integers” can be found using the theory of modular
functions, and a few spectacular examples are given by Ramanujan [5]. They can be gen-
erated using some amazing properties of the j -function. Some of the numbers which are
close approximations of integers are exp(π

√
163) (sometimes known as Ramanujan’s con-

stant), exp(π
√

37) and exp(π
√

58). These irrationals come close to an integer as follows:

exp(π
√

37) = 199148648 − 0.219 . . . · 10−4,

exp(π
√

58) = 24591257752 − 0.177 . . . · 10−6,

exp(π
√

163) = 262537412640768744 − 0.749 . . . · 10−12.

Another surprising result comes from the average length of a segment in an isosceles right
triangle with catheti of unit length. If l is this average length, then

l = 1

30

(
2+4

√
2+(4+√

2)sinh−1(1)
)
=0.4142933026 ...=(

√
2−1)−0.8 ... ·10−4.

.

”
Almost identities“ sind mathematische Ausdrücke, die gegen

”
schöne“ Zahlen zu

konvergieren scheinen, stattdessen aber – mit oft schier unglaublicher Präzision – da-
nebentreffen. Verblüffende almost identities sind faszinierend. Noch faszinierender ist
aber meist die Frage, die almost identities unweigerlich aufwerfen, nämlich: Ist es Zu-
fall oder gibt es einen tieferen Grund? In dieser Arbeit stellen die Autoren eine Familie
von almost identities vor und geben anschliessend eine Analyse, die das Phänomen in
diesen Fällen erklärt.
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Such astonishing non-equalities are usually called almost identities or non-identities.
Many examples of such unexpected behaviour are known [6]. The four examples above
are however different in essence: the first three come from a deep property of a complex
mathematical object (the j -function) and the last has a good chance of being a genuine
arithmetical coincidence.

A natural question that comes to mind in presence of such a non-identity is therefore
whether or not the phenomenon is purely coincidental, or comes from a more subtle pro-
cess. For instance, in the equation

eπ − π = 19.999099979 . . . ,

it is not clear at all whether the almost identity pops up from a deep connection between e
and π or just because the expression happens to be close to 20.

Recently, J.M. Borwein and P.B. Borwein discovered several families of almost identities
[2], leading to a systematic study of such phenomena. These were based on mathemat-
ical concepts that lead to clear explanations. Among the non-identities studied by these
authors, let us mention the following striking example:

∞∑
k=−∞

1

10(k/100)2
∼= 100

√
π

ln(10)
,

correct to at least 18,000 digits. In this situation, the almost identity is not a coincidence.
From the same viewpoint, let us mention as well the sequence

hn = n!
2(ln(2))n+1 ,

for 1 � n � 17, discovered by D. Hickerson. These numbers are close to integers due to
the fact that the above quotient is the dominant term in an infinite series whose sum is the
number of possible outcomes of a race between n people (where ties are allowed). See [6]
for the exact expression of these numbers. Here, once again, no coincidence.

While we were studying the function

f (x) =
∞∑

k=1

1

1 + 2kx
, x ∈ ]0, 1],

that appears in the analysis of the complexity of the binary gcd algorithm, we came to find
a new family of almost identities. Let us define the real numbers un as follows:

un := ln(2) ·
∞∑

k=−∞

1(
2k/2 + 2−k/2

)n , n ∈ N \ {0}.

The following equalities show the very strange behaviour of the almost identities generated
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by the sequence {un}:
u1 = π + 0.53 . . . · 10−11

u2 = 1 + 0.48 . . . · 10−10

u3 = π

23
+ 0.22 . . . · 10−9

u4 = 1

6
+ 0.67 . . . · 10−9

u5 = 3π

27 + 0.15 . . . · 10−8

u6 = 1

30
+ 0.29 . . . · 10−8

...
...

...

This article presents an explanation of this phenomenon. We study the cases with n = 1
and n = 2 by using the theory of Mellin transforms and leave the remaining cases together
with the recurrence relation (1.1) below to the extended version of this article [4]. We also
present a generalization of the phenomenon, leading to, e.g., the almost identity

ln(4) ·
∞∑

k=−∞

1

2−k + 2k
= π + 0.82 . . . · 10−5.

The proof of the recurrence relation

un =
(

1

4
· n − 2

n − 1

)
un−2 + rn (1.1)

is not given in this article, but it can be found in the extended version of this work [4],
where also the explicit values of rn satisfying 0 < rn � r10 = 0.7227399 . . . · 10−8,
∀n ∈ N, are described.

In this article, we will use the notation f (x) ∼a g(x) for equivalent functions in a neigh-
bourhood of a and log2 x for the logarithm in base 2 of x . Also, the set N is considered to
contain the integer 0 in the sequel.

2 Preliminaries

The first two cases on our list are

u1 = ln(2) ·
∞∑

k=−∞

1

2−k/2 + 2k/2 = π + 0.53 . . . · 10−11

and

u2 = ln(2) ·
∞∑

k=−∞

1(
2−k/2 + 2k/2

)2 = 1 + 0.48 . . . · 10−10.
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Let us define the complex functions g1 and g2 as

g1(x) = −2 · (
arctan(

√
x) − π/2

)
and g2(x) = 1

1 + x
, �x > 0 ,

as well as the functions G1 and G2 defined as

Gn(x) =
∞∑

k=1

gn(2kx) , �x > 0 , n = 1, 2.

The convergence of G1 is justified by the fact that in a neighbourhood of +∞ we have

arctan t − π/2 = −
∫ ∞

t

1

1 + v2
dv = −

∫ ∞

t

(
1

v2
− 1

v4
+ 1

v6
+ · · ·

)
dv = O(1/t).

The following equalities are justified because G1 and G2 converge uniformly on compact
subsets of their domains, and therefore, the derivative can be interchanged with the sum.
Therefore,

lim
m→∞

d

du

[
Gn(2−u)

]∣∣∣∣
u=m

= lim
m→∞

∞∑
k=1

d

du

[
gn(2k−u)

]∣∣∣∣
u=m

= lim
m→∞ ln(2) ·

∞∑
k=1

(
2(k−m)

)n/2

(
1 + 2(k−m)

)n

= lim
m→∞ ln(2) ·

∞∑
k=1

1(
2−(k−m)/2 + 2(k−m)/2

)n

= un, (2.1)

where the limit is understood with m ∈ N. The game plan is then to express the functions
G1 and G2 in a completely different manner in order to compute these limits. The keystone
of this process is the Mellin transform [3]. Recall that the Mellin transform of a locally
Lebesgue integrable function f (x) over ]0,∞[ is the function

f ∗(s) =
∫ ∞

0
f (x)xs−1dx .

The conditions f (x) ∼0 O(xu) and f (x) ∼∞ O(xv), with u > v guarantee that f ∗(s)
exists in the strip −u < �s < −v. Mellin’s inversion formula [3, p. 13] states that if f is
continuous and c ∈ ] − u,−v[, then

f (x) = 1

2π i

∫ c+i∞

c−i∞
f ∗(s)x−sds,

and in a neighbourhood of 0, we have

f (x) =
∑

�sl<c

Res( f ∗(s)x−s , sl),
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where the summation is over the poles sl of the function f ∗(s)x−s whose real part is
strictly smaller than c.

Let g(x) be a locally Lebesgue integrable function over ]0,∞[, f (x) = ∑∞
k=1 g(2kx),

and suppose that the convergence is uniform in ]0,∞[. Then,

f ∗(s) =
∫ ∞

0

∞∑
k=1

g(2kx)xs−1dx

=
∞∑

k=1

∫ ∞

0
g(y)ys−12−ksdy

= g∗(s)
2s − 1

. (2.2)

3 The case n = 1

Proposition 1. For x > 0, we have

G1(x) = −π

2
− π log2(x) + √

x S1(x) −
∞∑

k=1

sin(2kπ log2(x))

k · cosh
(
2kπ2/ ln(2)

) ,

where S1(x) is a power series in x, which converges in [0, 1[.

Proof. As announced earlier, the idea is to use Mellin transforms in a back and forth
process to reveal another expression of G1. Using (2.2), we can write

G∗
1(s) = g∗

1(s)

2s − 1
. (3.1)

In order to compute g∗
1 , recall that in a neighbourhood of +∞ we have arctan t − π/2 =

O(1/t). So, we can perform an integration by parts, as long as �s ∈ ]0, 1/2[ :

g∗
1(s) = −2

∫ ∞

0

(
arctan(

√
x) − π/2

)
xs−1dx

= −2 ·
[
(
arctan(

√
x) − π/2

) · xs

s

∣∣∣∣
∞

0
− 1

2s

∫ ∞

0

xs−1/2

1 + x
dx

]

= 1

s

∫ ∞

0

xs−1/2

1 + x
dx

= π

s cos πs
.

The last equality comes from the relation

∫ ∞

0

xs−1

1 + x
dx = π

sin πs
.
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Using Mellin’s inversion formula with c = 1/4 and (3.1), we get

G1(x) = 1

2π i

∫ 1/4+i∞

1/4−i∞

( π

s cos πs

) x−s

2s − 1
ds

=
∑

�sl<1/4

Res

(( π

s cos πs

) x−s

2s − 1
, sl

)
.

The poles of the function
(

π
s cos πs

) x−s

2s−1 can be partitioned as follows:

i) s = 0 is a pole of order two,

ii) the real simple poles −1/2 + k, k ∈ Z,

iii) the imaginary simple poles 2kπ i/ ln(2), k ∈ Z \ {0}.
The residues are then

−π log2(x) − π

2
at s = 0 ,

− (−2)k+2

(1 + 2k)(2k+1 − √
2)

√
xxk at s = −1/2 − k , k ∈ N ,

1

2i
· exp(−2kπ i log2(x))

k · cosh
(
2kπ2/ ln(2)

) at s = 2kπ i/ ln(2) , k ∈ Z \ {0} ,

and the above sum becomes

G1(x) = −π

2
− π log2(x) +

∞∑
k=0

(−2)k+2

(1 + 2k)(−2k+1 + √
2)

√
xxk

−
∞∑

k=1

sin(2kπ log2(x))

k · cosh
(
2kπ2/ ln(2)

) ,

which proves the proposition. �

Corollary 2. u1 = π +
∞∑

k=1

2π

cosh
(
2kπ2/ ln(2)

) .

Proof. Based on (2.1), we have

u1 = lim
m→∞

d

du

[
G1(2−u)

]∣∣∣∣
u=m

= π + lim
u→∞

[
e−u/2S1(e

−u)
]′ +

∞∑
k=1

2π

cosh
(
2kπ2/ ln(2)

)

and the last limit being equal to zero, the corollary is proven. �
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The case n = 1 is then settled since the sum on the right-hand side of the equality of
Corollary 2 is in fact small:

u1 − π =
∞∑

k=1

2π

cosh
(
2kπ2/ ln(2)

) = 0.538914478 . . . · 10−11.

4 The case n = 2
We can compute u2 in a similar way as we computed u1. Note that once u1 and u2 are
computed, the recurrence relation (1.1) gives the complete sequence {ui }.
Proposition 3. For x > 0, we have

G2(x) = −1

2
− log2(x) + S2(x) − 2π

ln(2)

∞∑
k=1

sin(2kπ log2(x))

sinh
(
2kπ2/ ln(2)

) ,

where S2(x) is a power series in x, converging in [0, 1[ such that S2(x) = 0.

Proof. The proof follows the same lines as in the first case. First,

g∗
2(s) =

∫ ∞

0

xs−1

1 + x
dx = π

sin πs
,

and thus, once again based on (2.2) and (3.1), we have

G2(x) =
∫ 1/2+i∞

1/2−i∞
G∗

2(s)x−sds

=
∫ 1/2+i∞

1/2−i∞

( π

sin πs

) x−s

2s − 1
ds

=
∑

�sl<1/2

Res

(( π

sin πs

) x−s

2s − 1
, sl

)
.

The poles of the function can be partitioned as follows:

i) s = 0 is a pole of order two,

ii) the real simple poles k, k ∈ Z \ {0},
iii) the imaginary simple poles 2kπ i/ ln(2), k ∈ Z \ {0}.

The residues are then

− log2(x) − 1

2
at s = 0 ,

− (−2)k

2k − 1
xk at s = −k , k = 1, 2, 3, . . . ,

π

i
· exp(−2kπ i log2(x))

ln(2) · sinh
(
2kπ2/ ln(2)

) at s = 2kπ i/ ln(2) , k ∈ Z \ {0}.
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The new expression of G2 is therefore

G2(x) = −1

2
− log2(x) −

∞∑
k=1

(−2)k

2k − 1
xk − 2π

ln(2)

∞∑
k=1

sin(2kπ log2(x))

sinh
(
2kπ2/ ln(2)

) .

This concludes the proof. �

Corollary 4. u2 = 1 + 2π

ln(2)

∞∑
k=1

2kπ

sinh
(
2kπ2/ ln(2)

) .

Proof. We use the same trick as in Corollary 2:

u2 = lim
m→∞

d

du

[
G2(2−u)

]∣∣∣∣
u=m

= 1 + lim
u→∞

[
S2(e

−u)
]′ + 2π

ln(2)

∞∑
k=1

2kπ

sinh
(
2kπ2/ ln(2)

)

and the limit being equal to zero, the corollary is proven. �

Once again, this shows why the number u2 is almost an integer. Indeed, the sum on the
right-hand side is fairly small:

u2 − 1 = 2π

ln(2)

∞∑
k=1

2kπ

sinh
(
2kπ2/ ln(2)

) = 0.4885108992 . . . · 10−10.

5 Final remarks

Having found the roots of the mystery related to the non-equalities u1 �= π and u2 �= 1,
let us mention that the same tools used so far lead to a complete understanding of the non-
equalities concerning u3, u4, . . . and why they are so close to “good arithmetic numbers”.
The interested reader can find the details in the extended version of this article [4].

We end this article with the following remark: Our arguments do not depend on the pres-
ence of 2 in the denominator of

1(
2−k/2 + 2k/2

)n .

One could argue that any sum of the type

ln(m) ·
∞∑

k=−∞

1(
m−k/2 + mk/2

)n
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has the potential to lie close to Q or πQ depending on the parity of n. As a matter of fact,
we have, for example,

ln(4) ·
∞∑

k=−∞

1

2−k + 2k
= π + 0.82 . . . · 10−5,

ln(9) ·
∞∑

k=−∞

1

3−k + 3k
= π + 0.15 . . . · 10−2,

ln(4) ·
∞∑

k=−∞

1(
2−k + 2k

)2
= 1 + 0.37 . . . · 10−4.

In fact, it can be proven that the choice m = 2 is the best one can do in order to maximize
the resemblance with elements in Q ∪ πQ, see [4].
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