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1 Introduction
A (topological) disk is a subset of the euclidean plane homeomorphic to the unit ball. If
two disks have a common interior point then we say that the disks overlap. A sequence
C = 〈C1, . . . , Cn〉 of mutually non overlapping congruent disks where Ci ∩ C j �= ∅ if and
only if |i − j | ≤ 1 is called a snake. If the snake C is not a proper subset of another snake
of disks congruent to the members of C then we say that the snake is limited.

We are concerned with the following question: What is the minimum number of mutually
non overlapping congruent disks which can form a limited snake? Here we prove

Theorem. The minimum number of mutually non overlapping congruent disks which can
form a limited snake is four.

Surprisingly, under the assumption of convexity the above problem seems to be much
more complicated. Fig. 1 shows that six mutually non overlapping congruent copies of a

.

Auf einem Tisch legt man mit lauter gleichen Münzen eine
”
Münzschlange“: an eine

erste Münze anstossend legt man eine zweite, daran anstossend eine dritte usw. Bei
diesem Legespiel kann eine Konfiguration entstehen, bei der man weder am Kopf noch
am Schwanz der Schlange eine weitere Münze anschliessen kann, weil der Platz durch
andere Münzen des Schlangenkörpers versperrt wird. Welches ist die kleinste Anzahl
Münzen, bei der dies vorkommen kann? Die Autoren untersuchen und beantworten
die entsprechende Frage, wenn man die runden Münzen durch eine beliebige einfach
zusammenhängende beschränkte Menge der Euklidischen Ebene ersetzt. Das entspre-
chende Problem für konvexe beschränkte Mengen ist hingegen noch offen.
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certain rectangle can form a limited snake. Do there exist convex disks whose less then
six mutually non overlapping congruent copies could form limited snakes? We conjecture
that the answer to this question is in the negative.

Fig. 1

Also, the problem of determining the minimum number of mutually non overlapping con-
gruent copies of a given disk which can form a limited snake is very complicated. The only
known result in this direction is that the minimum number of mutually non overlapping
congruent balls which can form a limited snake is ten (see [1]).

For additional results on more restrictive variants of the snake problem, see [2, 3, 4, 5, 6,
7, 8].

2 Proof of the theorem

Fig. 2 shows that this minimum number is at most four.

Fig. 2

To complete the proof we have to show that two or three mutually non overlapping congru-
ent disks cannot form a limited snake. Let C be an arbitrary disk and let C = 〈C1, . . . , Cn〉
be a limited snake consisting of disks congruent with C .
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We start with the case n = 2. First assume that conv C1 = conv C2, i.e., the convex
hulls of C1 and C2 coincide. If every boundary point of conv C1 belongs to C1, i.e., C1
is convex, then C1 and C2 coincide, which is impossible. Thus there exists a boundary
point of conv C1 which does not belong to C1. This point lies in the relative interior of
a segment joining two extreme points, say A and B , of conv C1. Recall that a point of a
disk is an extreme point of the disk if there exists no segment in the disk that contains the
point in its relative interior. The points A and B are extreme points of C1 and they can be
joined with a path P1 whose points different from A and B lie in the interior of C1. Also,
the points A and B are extreme points of C2 and they can be joined with a path P2 whose
points different from A and B lie in the interior of C2. Then either the bounded region
surrounded by P1 and the segment AB contains P2 or the bounded region surrounded by
P2 and the segment AB contains P1, which is impossible since conv C1 = conv C2.

Thus there exists a point P of C1 which does not belong to conv C2. Then P can be strictly
separated from C2 by a line l. Let l ′ be the support line of C1 which is parallel to l and
does not separate C1 and C2. Reflecting C1 with respect to l ′ we obtain a third copy of C
which forms with C1 and C2 a three element snake, a contradiction.

Now we turn to the case n = 3. Let DE be a diameter of C1 and consider the stripe S1
whose boundary lines, say l1 and l2, go through D and E , respectively, and are perpendic-
ular to DE . If C3 is not contained in S1 then consider the support line l of C3 which is
parallel to l1 and whose distance from S1 is maximal. Without loss of generality we may
assume that l2 separates l and l1. Let F be a common point of C3 and l. The disk C2
cannot intersect both l and l1 since the distance between the two lines is greater than the
diameter of C2. Thus either reflecting C1 with respect to l1 or reflecting C3 with respect
to l we obtain a fourth copy of C which forms with C1, C2 and C3 a four element snake, a
contradiction.

Thus C3 lies in S1. Let G H be a diameter of C3 and consider the stripe S3 whose boundary
lines, say l3 and l4, go through G and H , respectively, and are perpendicular to G H . If
C1 is not contained in S3 then repeating the previous argument we obtain a contradiction.
Therefore C1 lies in S3. If S1 = S3, i.e., l1 = l3 and l2 = l4 without loss of generality, then
D and G are different points since C1 ∩ C3 = ∅. Now C2 does not contain both D and H
since their distance is greater than the diameter of C2. Therefore either reflecting C1 with
respect to l1 or reflecting C3 with respect to l2 we obtain a fourth copy of C which forms
with C1, C2 and C3 a four element snake, a contradiction. On the other hand, if S1 and S2
are different stripes then their intersection is a parallelogram which contains both C1 and
C3. The points D and E can be joined by a path P3 in C1 while G and H can be joined
by a path P4 in C3. Since the pathes join opposite sides of the above parallelogram they
necessarily intersect each other. But this is impossible since C1 and C3 are disjoint. This
completes the proof of the theorem.
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