
Elem. Math. 62 (2007) 102 – 105
0013-6018/07/030102-4

c© Swiss Mathematical Society, 2007

Elemente der Mathematik

Affine congruence by dissection of intervals

Christian Richter

Christian Richter studierte Mathematik an der Friedrich-Schiller-Universität Jena,
wo er im Jahr 2001 auch habilitierte. Zur Zeit ist er dort Heisenberg-Stipendiat der
Deutschen Forschungsgemeinschaft und bearbeitet ein Projekt zu geometrischen und
approximationstheoretischen Fragen in Zusammenarbeit mit der Université Paris VI.

1 Introduction and results
Tarski’s circle squaring problem (see [8]) has motivated the following question: Can a
circular disc be dissected into finitely many topological discs such that images of these
pieces under suitable Euclidean motions form a dissection of a square? Dubins, Hirsch,
and Karush give a negative answer in [1]. However, one can get positive results if the group
of Euclidean motions is replaced by suitable other groups of affine maps of the plane (see
[3, 5, 6, 7]). The general concept behind these phenomena is the congruence by dissection
of discs with respect to some fixed group of affine transformations of R

2.

Let d denote the Euclidean distance in the plane R
2. We recall that a topological disc D is

the image of the closed unit disc {x ∈ R
2 : d(x, 0) ≤ 1} under a homeomorphism of the

plane onto itself. We say that D is dissected into the discs D1, . . . , Dn if D = D1∪. . .∪Dn

and int(Di ) ∩ int(D j ) = ∅ for 1 ≤ i < j ≤ n, int(Di ) denoting the interior of Di .

Given a group G of affine transformations of R
2, two topological discs D, E are called

congruent by dissection with respect to G if and only if there exist dissections of D and E
into the same finite number n ≥ 1 of subdiscs D1, . . . , Dn and E1, . . . , En , respectively,

.

In der vorliegenden Arbeit wird der Begriff der Zerlegungsgleichheit von Intervallen
auf der reellen Zahlengeraden bezüglich einer Gruppe G affiner Transformationen ein-
geführt und studiert. Dabei werden zwei kompakte Intervalle I, J ⊆ R zerlegungs-
gleich bezüglich G genannt, wenn I eine Zerlegung in endlich viele Teilintervalle be-
sitzt, welche durch Transformationen aus G in eine Zerlegung von J überführt werden
können. Es zeigt sich, dass G genau dann die Zerlegungsgleichheit beliebiger Inter-
valle positiver Länge erlaubt, wenn G alle Translationen und eine Kontraktion besitzt.
Dagegen ermöglicht G die Zerlegungsgleichheit beliebiger Intervalle gleicher Länge
dann und nur dann, wenn alle Translationen zu G gehören.
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such that, for 1 ≤ i ≤ n, Di and Ei are congruent with respect to G (that is, there exists
ϕi ∈ G such that Ei = ϕi (Di )). In this case we say that the congruence by dissection
of D and E is realized by n pieces of dissection, namely by D1, . . . , Dn or E1, . . . , En ,
respectively.

Theorem 2 from [7] characterizes the groups G that admit a congruence by dissection of
any two topological discs. It says in particular the following:

Theorem 0. Let G be a group of affine transformations of R
2. Then the following are

equivalent:

(a) Any two topological discs D, E ⊆ R
2 are congruent by dissection with respect to G.

(b) Any two topological discs D, E ⊆ R
2 of the same two-dimensional Hausdorff mea-

sure are congruent by dissection with respect to G.

(c) G contains a contraction and every orbit G(x), x ∈ R
2, is dense in R

2.

Here a map ϕ ∈ G is called a contraction if there is a constant 0 < c < 1 such that
d(ϕ(x1), ϕ(x2)) ≤ c d(x1, x2) for all x1, x2 ∈ R

2. The orbit G(x) is defined by G(x) =
{ϕ(x) : ϕ ∈ G}.
In the present note we ask for a similar characterization of groupsG in the one-dimensional
case. Then compact intervals of positive length are the analogues of topological discs.
With this replacement, congruence by dissection can be defined as above. Since in the
one-dimensional case the family of the compact intervals coincides with that of all con-
nected polyhedra, the following results can be understood as contributions to the theory
of congruence by dissection of polyhedra with polyhedral pieces of dissection, too (see
Chapters 1 and 2 of [2]).

It turns out that the one-dimensional versions of (a) and (b) are not equivalent. We obtain
the following two characterizations:

Theorem 1. Let G be a group of affine transformations of R. Then the following are
equivalent:

(i) Any two compact intervals I, J ⊆ R of positive length are congruent by dissection
with respect to G.

(ii) Any two compact intervals I, J ⊆ R of positive length admit a congruence by dis-
section with respect to G that uses only two pieces of dissection.

(iii) G contains a contraction and acts transitively on R.

(iv) G contains a contraction and all translations.

Theorem 2. Let G be a group of affine transformations of R. Then the following are
equivalent:

(i)′ Any two compact intervals I, J ⊆ R of the same positive length are congruent by
dissection with respect to G.

(ii)′ Any two compact intervals I, J ⊆ R of the same positive length are congruent with
respect to G.

(iii)′ G acts transitively on R.

(iv)′ G contains all translations.
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Note that the one-dimensional analogue of (c) does not imply (iii) and not even (iii)′.
This contradicts the first impression that congruence by dissection of intervals should be
much easier realizable than that of discs, because it is much more elementary. The larger
flexibility of congruence by dissection of discs rests on the huge freedom concerning the
possible shapes of pieces of dissection.

In contrast with (i) and (i)′, the weaker condition of the existence of a congruence by
dissection of any two compact intervals I, J ⊆ R of a fixed positive length does not
imply the transitivity of G. For example, the group G = Z of integer translations gives
a congruence by dissection of any two intervals I = [a, a + 1] and J = [b, b + 1] of
length one. Indeed, we find l ∈ Z such that a ≤ b + l < a + 1 and obtain trivially
J = I − l if a = b + l. Otherwise we have I = [a, b + l] ∪ [b + l, a + 1] and
([b + l, a + 1] − l) ∪ ([a, b + l] + 1 − l) = [b, a + 1 − l] ∪ [a + 1 − l, b + 1] = J .

2 Proofs

The proofs of Theorems 1 and 2 are presented simultaneously.

1. (iii)⇒(iv) and (iii)′ ⇒(iv)′. Let G be transitive. We have to show that, for every x0 ∈ R,
there is a translation in G mapping 0 onto x0. Let ϕ ∈ G be such that ϕ(0) = x0. If
ϕ is a translation we are done. Otherwise ϕ has a fixed point x1. We pick ψ ∈ G with
ψ(x0) = x1. Then ψ−1ϕ−1ψϕ is a translation that maps 0 onto x0.

2. (iv)′ ⇒(ii)′ is obvious. For proving (iv)⇒(ii) we suppose (iv) to be satisfied and
consider two fixed intervals I, J of length a, b > 0, respectively. Say a < b, because the
case a = b is trivial. By (iv), there is a constant c > 1 such that G contains all dilatations
with factor ck , k ∈ Z. We pick k0 ≥ 1 such that a ck0 > b and dissect I into subintervals
I1, I2 of length a1 = b−a

ck0 −1
, a2 = a − b−a

ck0 −1
, respectively. Then J can be dissected into

images ϕ1(I1) and ϕ2(I2), since b = ck0 a1 + a2. This yields (ii). (In the context of affine
congruence by dissection of polyhedra the proof of (iv)⇒(ii) was already given in [4].)

3. (ii)⇒(i) and (ii)′ ⇒(i)′ are trivial.

4. (i)⇒(iii) and (i)′ ⇒(iii)′. If G admits a congruence by dissection of intervals of different
length then G clearly must contain a contraction. We prepare the proof of the remaining
implication (i)′ ⇒(iii)′ by a lemma.

Lemma. Let two intervals I = [a1, a2] and J = [b1, b2] be congruent by dissection with
respect to a group G of affine transformations of R. Then

G(a1) ∩
(G(a2) ∪ G(b1) ∪ G(b2)

) �= ∅ and G(b2) ∩ (G(a1) ∪ G(a2) ∪ G(b1)
) �= ∅.

The proof even comprises arbitrary groups G of homeomorphisms of R. The present
version goes back to an anonymous hint.

Proof. According to the supposition there exist a dissection I = I1 ∪ . . . ∪ In into subin-
tervals Ii = [xi−1, xi ] with a1 = x0 < x1 < . . . < xn = a2, a dissection J = J1 ∪ . . .∪ Jn

into subintervals Ji = [yi−1, yi ] with b1 = y0 < y1 < . . . < yn = b2, maps ϕi ∈ G, and a
permutation π : {1, . . . , n} → {1, . . . , n} such that ϕi (Ii ) = Jπ(i), 1 ≤ i ≤ n.
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Let � be a bipartite graph between A = {(xi , 1) : 0 ≤ i ≤ n} and B = {(yi , 2) : 0 ≤
i ≤ n} with the following edges: (xi−1, 1) (considered as the left-hand end-point of Ii )
is connected with (ϕi (xi−1), 2) and (xi , 1) (representing the right-hand end-point of Ii ) is
connected with (ϕi (xi ), 2), 1 ≤ i ≤ n. If ϕi (xi ) = ϕi+1(xi ) then (xi , 1) and (ϕi (xi ), 2)
are connected by two edges.

Obviously, the vertices (x0, 1), (xn, 1), (y0, 2), and (yn, 2) are of degree 1, whereas all
other vertices have degree 2. Hence the connected component of � starting at (x0, 1) =
(a1, 1) is a path whose other end-point is one of (xn, 1) = (a2, 1), (y0, 2) = (b1, 2),
and (yn, 2) = (b2, 2). This yields G(a1) ∩ {a2, b1, b2} �= ∅. The same argument gives
G(b2) ∩ {a1, a2, b1} �= ∅. �

We come back to the proof of (i)′ ⇒(iii)′. It is to show that (i)′ implies G(a)∩G(b) �= ∅ for
all a, b ∈ R, a < b. By (i)′, the intervals I = [

a, a+b
2

]
and J = [a+b

2 , b
]

are congruent
by dissection with respect to G. If G( a+b

2

) ∩ G(b) �= ∅ then we have G( a+b
2

) = G(b)
and the first part of the lemma yields the claim G(a) ∩ G(b) �= ∅. In the opposite case
G( a+b

2

) ∩ G(b) = ∅ we obtain G(b) ∩ G(a) �= ∅ by the second part of the lemma. So
(i)′ ⇒(iii)′ is verified and the proofs of Theorems 1 and 2 are complete. �
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[2] Hadwiger, H.: Vorlesungen über Inhalt, Oberfläche und Isoperimetrie. Springer-Verlag, Berlin-Göttingen-
Heidelberg 1957.

[3] Hertel, E.; Richter, C.: Squaring the circle by dissection. Beiträge Algebra Geom. 44 (2003), 47–55.
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