Elemente der Mathematik

A short proof of Morley's theorem

Yoshitake Hashimoto

Yoshitake Hashimoto received his D.Sc. from University of Tokyo in 1990. He then had a postdoctoral position at University of Tokyo. Since 1994 he has a position at Osaka City University, where he is now associate professor in the Department of Mathematics. His main fields of research are topology and differential geometry.

We present a proof of the following:

Morley's theorem (1899) *In any triangle, the three points of intersection of the adjacent angle trisectors form an equilateral triangle.*

Proof. Let α , β , γ be arbitrary positive angles with $\alpha + \beta + \gamma = 60^{\circ}$. For any angle η we put $\eta' := \eta + 60^{\circ}$.

Let $\triangle DEF$ be an equilateral triangle, and *A* [resp. *B*, *C*] be the point lying opposite to *D* [resp. *E*, *F*] with respect to *EF* [resp. *FD*, *DE*] and satisfying $\angle AFE = \beta'$, $\angle AEF = \gamma'$ [resp. $\angle BDF = \gamma'$, $\angle BFD = \alpha'$; $\angle CED = \alpha'$, $\angle CDE = \beta'$]. Then $\angle EAF = 180^{\circ} - (\beta' + \gamma') = \alpha$, and similarly $\angle FBD = \beta$, $\angle DCE = \gamma$. By symmetry it is enough to show that $\angle BAF = \alpha$ and $\angle ABF = \beta$ as well.

The perpendiculars from *F* to *AE* and *BD* have the same length *s*. If the perpendicular from *F* to *AB* has length h < s, then $\angle BAF < \alpha$ and $\angle ABF < \beta$. If, on the other hand, h > s, then $\angle BAF > \alpha$ and $\angle ABF > \beta$. Since

$$\angle BAF + \angle ABF = \alpha' + \beta' + 60^{\circ} - 180^{\circ} = \alpha + \beta,$$

we see that necessarily h = s and $\angle BAF = \alpha$, $\angle ABF = \beta$.

Yoshitake Hashimoto Department of Mathematics Graduate School of Science Osaka City University 3-3-138, Sugimoto Sumiyoshi-ku Osaka, 558-8585 Japan e-mail hashimot@sci.osaka-cu.ac.jp