Note from the Editorial Board

Note on rectangles with vertices on prescribed circles

Christian Blatter and Gerhard Wanner

Inspired by [2], Ionascu and Stanica considered the following problem: The four subsequent vertices of a rectangle R in the plane are at distances r_1 , r_2 , r_3 , r_4 from the origin. Given these data, what can be said about the area A of R? In a recent paper [1] they proved

Theorem 1. (a) For given $r_i \ge 0$, rectangles R of the described kind exist iff

$$r_1^2 + r_3^2 = r_2^2 + r_4^2 \,. (1)$$

(b) The areas of these rectangles lie between the bounds

$$A_{\min} = |r_2r_4 - r_1r_3|, \qquad A_{\max} = r_2r_4 + r_1r_3.$$

The authors call their problem "unusual because of its surprisingly simple answer in spite of our rather laborious solution" (which takes 10 pages). In this note we shall prove Theorem 1 in a simple way, making use of no more than the Pythagorean theorem and the formula for the derivative of a product.

After cyclic reordering, and neglecting special or degenerate cases, we may assume that $0 < r_1 < r_i \ (2 \le i \le 4)$. We may also assume that the sides of the rectangle are parallel to the axes and that the point $P_1 = (x, y)$ on the circle of radius r_1 is the lower lefthand vertex of R (Fig. 1). From P_1 we draw a horizontal to the right and obtain the vertex $P_2 = (\bar{x}, y)$ on the circle of radius r_2 ; in a similar way, going from P_1 vertically upwards, we obtain the vertex $P_4 = (x, \bar{y})$ on the circle of radius r_4 . So far we have

$$x^{2} + y^{2} = r_{1}^{2},$$

$$\bar{x}^{2} + y^{2} = r_{2}^{2}, \quad \bar{x} > 0,$$

$$x^{2} + \bar{y}^{2} = r_{4}^{2}, \quad \bar{y} > 0.$$
(2)

The upper righthand vertex of R is $P_3 = (\bar{x}, \bar{y})$, and it lies on the circle of radius r_3 iff

$$r_3^2 = \bar{x}^2 + \bar{y}^2 = r_2^2 - y^2 + r_4^2 - x^2 = r_2^2 + r_4^2 - r_1^2$$
,

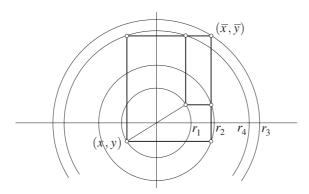


Figure 1

i.e., iff (1) holds. Since the above construction is always possible, part (a) of the theorem follows.

Remark. The midpoint of R bisects both diagonals. It follows that (1) can be seen as an instance of the so-called Pappus-Fagnano-Legendre formula $a^2 + b^2 = (c^2 + z^2)/2$ where z/2 is the length of the median through C of a triangle with sides a, b, c.

For our extremal problem we have to consider admissible variations dx, dy, $d\bar{x}$, $d\bar{y}$ of the quantities x, y, \bar{x} , \bar{y} . To this end we differentiate the equations (2) and obtain

$$x dx + y dy = 0$$
, $\bar{x} d\bar{x} + y dy = 0$, $x dx + \bar{y} d\bar{y} = 0$ (3)

from which we easily infer

$$d\bar{x} = \frac{x}{\bar{x}} dx , \qquad d\bar{y} = \frac{y}{\bar{y}} dy . \tag{4}$$

The area of R is $A = (\bar{x} - x)(\bar{y} - y)$; it is maximal or minimal iff

$$dA = (d\bar{x} - dx)(\bar{y} - y) + (\bar{x} - x)(d\bar{y} - dy) = 0.$$

Using (4) we get

$$dA = \frac{x - \bar{x}}{\bar{x}}(\bar{y} - y) \, dx + (\bar{x} - x) \frac{y - \bar{y}}{\bar{y}} dy = -\frac{A}{\bar{x} \, \bar{y}}(\bar{y} \, dx + \bar{x} \, dy) \, .$$

So the condition dA = 0 reduces to $\bar{y} dx + \bar{x} dy = 0$. Combined with the first equation (3) this shows that in the stationary situation we necessarily have

$$\frac{y}{x} = \frac{\bar{x}}{\bar{y}} \,. \tag{5}$$

In order to determine the maximal and minimal areas of the rectangle we argue as follows: From (5) and (2) we get

$$\frac{\bar{x}^2}{\bar{y}^2} = \frac{y^2}{x^2} = \frac{r_2^2 - \bar{x}^2}{r_4^2 - \bar{y}^2}, \quad \text{whence} \quad \bar{x}^2 (r_4^2 - \bar{y}^2) = \bar{y}^2 (r_2^2 - \bar{x}^2),$$

and after cancelling terms we see that

$$\frac{\bar{y}}{\bar{x}} = \frac{r_4}{r_2}, \qquad \frac{y}{x} = \frac{r_2}{r_4},$$

the latter using (5) again.

We now know the ratios of these coordinates as well as their Pythagorean sums, whence they must be

$$x = \pm \frac{r_4}{\sqrt{r_2^2 + r_4^2}} r_1$$
, $y = \pm \frac{r_2}{\sqrt{r_2^2 + r_4^2}} r_1$, $\bar{x} = \frac{r_2}{\sqrt{r_2^2 + r_4^2}} r_3$, $\bar{y} = \frac{r_4}{\sqrt{r_2^2 + r_4^2}} r_3$.

Inserting these values into the formula for A we obtain, using (1):

$$A = \frac{(r_2r_3 \mp r_4r_1)(r_4r_3 \mp r_2r_1)}{r_2^2 + r_4^2} = \frac{r_1^2 + r_3^2}{r_2^2 + r_4^2} r_2r_4 \mp r_1r_3 = r_2r_4 \mp r_1r_3.$$

This leads to

$$A_{\min} = r_2 r_4 - r_1 r_3$$
, $A_{\max} = r_2 r_4 + r_1 r_3$,

as stated. It is easily seen that for the maximum the origin lies in the interior of R whereas for the minimum it is in the exterior.

References

- [1] Ionascu, E.J.; Stanica, P.: Extremal values for the area of rectangles with vertices on concentrical circles. *Elem. Math.* 62 (2007), 30–39.
- [2] Zahlreich Problems Group: Problem 11057. Amer. Math. Monthly 111 (2004), 64. Solution: ibid. 113 (2006), 82.

Christian Blatter

Albertus-Walder-Weg 16

CH-8606 Greifensee, Switzerland

 $e\hbox{-mail: christian.blatter@math.ethz.ch}\\$

Gerhard Wanner

Université/Mathématiques

Case postale 64

CH-1211 Génève 4, Switzerland

e-mail: Gerhard.Wanner@math.unige.ch