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Arthur Gut received his Ph.D. from ETH Zürich with B. Eckmann. After postdoctoral
stays in the U.S.A. and Mexico he became a Gymnasium teacher at the Kantonsschule
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1 Introduction

The construction of the feet of the altitudes of a triangle or a tetrahedron is a standard task
in elementary geometry or solid geometry. The planar case is of particular interest: The
feet F0, F1, F2 ∈ R

2 of the altitudes of a triangle with vertices A0, A1, A2 ∈ R
2 form the

so-called orthic triangle. This triangle is the solution of Fagnano’s problem (1775), see,
e.g., [1]: Among all triangles P0, P1, P2 with Pk on the side opposite to Ak (k = 0, 1, 2)
or on its extension, find the triangle with minimal perimeter.

In n ≥ 2 dimensions the computation of all feet F0, F1, . . . , Fn ∈ R
n of a simplex in

R
n from the coordinates of its vertices A0, A1, . . . , An ∈ R

n is therefore of interest. In
this note we describe a surprisingly compact algorithm for this task that is valid in every

.

Im Unterricht in Elementargeometrie gehören die Höhen im Dreieck zum Standard-
stoff. Die Verallgemeinerung auf das Tetraeder im Raum liefert gelegentlich Ma-
terial für Maturitätsaufgaben, etwa Berechne den der Ecke A gegenüberliegenden
Höhenfusspunkt FA im Tetraeder ABC D aus den Koordinaten der Eckpunkte. Es
zeigt sich, dass es ein erstaunlich einfaches und kompaktes Verfahren für die simul-
tane Berechnung aller Höhenfusspunkte eines n-dimensionalen Simplex gibt. Dieses
funktioniert für alle Dimensionen n ≥ 1 und beruht auf der Verwendung homogener
Koordinaten und projektiver Räume. Nach einer kurzen Einführung dieser Begriffe
werden zunächst alle Seitenflächen eines Simplex mit einer einzigen Matrixinversion
berechnet.
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dimension n ≥ 1. The basis of our approach is the use of homogeneous coordinates that
will be reviewed in the next section. Then, the faces of the simplex will be represented by
means of an inverse matrix. Finally, the feet are obtained by intersecting the altitudes with
the faces. An elegant code in MATLAB [4] will be given at the end.

2 Homogeneous coordinates

In homogeneous coordinates the point X = (X1, X2, . . . , Xn)T ∈ R
n is represented by

the (n + 1)-tuple x = (x0, x1, . . . , xn)
T ∈ R

n+1 \ {(0, 0, . . . , 0)T }, where the superscript
T denotes transposition and

Xk = xk

x0
, k = 1, . . . , n , (1)

for any x0 �= 0. Any multiple c x of x with c �= 0 represents the same point. A projective
space is obtained by allowing x0 = 0 : (0, x1, . . . , xn)

T represents the infinitely remote
point, or absolute point, in the direction of (x1, x2, . . . , xn)

T ∈ R
n .

All points X = (X1, X2, . . . , Xn)T ∈ R
n satisfying the linear relation

e0 + e1 X1 + . . . + en Xn = 0 (2)

form an (n − 1)-dimensional hyperplane E ⊂ R
n . The elements ek of the (n + 1)-tuple

e = (e0, e1, . . . , en)
T ∈ R

n+1 \ {(0, 0, . . . , 0)T } are called the hyperplane coordinates, or
Plücker coordinates, of E ; again, any multiple c e of e with c �= 0 represents the same
hyperplane. Equation (2) with (1) yields the condition of incidence,

n∑

k=0

ek xk = 0 or eT x = 0 ; (3)

i.e. the hyperplane E contains the point X if and only if the dot product of the homoge-
neous vectors e and x vanishes.

From (2) it is seen that the vector (e1, e2, . . . , en)
T ∈ R

n is orthogonal to every vector in
the hyperplane E . Therefore, the direction of (e1, e2, . . . , en)T , i.e. its absolute point

e0 := (0, e1, e2, . . . , en)
T ∈ R

n+1 , (4)

corresponds to the direction orthogonal to E . For a more detailed introduction to projective
spaces and homogeneous coordinates see, e.g., [1] or [3].

3 The faces of a simplex

Let the n + 1 vertices Ak (k = 0, . . . , n) of a nondegenerate simplex in R
n be given by

their homogeneous coordinates, e.g.

ak = (1, Ak1, Ak2, . . . , Akn)T , k = 0, . . . , n , (5)
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where Akj is the j -th Cartesian component of the position vector of the k-th vertex. Con-
sider now the matrix

A = (a0, a1, . . . , an) ∈ R
(n+1)×(n+1) (6)

whose columns are the homogeneous coordinates of the vertices of the simplex. Assuming
that A is invertible, we denote its inverse by ST ; hence

ST · A = I or S := (A−1)T , (7)

where I is the unit matrix of order n + 1. By partitioning ST into its rows sT
k =

(sk0, sk1, . . . , skn) we have

ST =



sT

0
...

sT
n



 or S = (s0, s1, . . . , sn) , (8)

and (7) may be written as

sT
k al =

{
0, k �= l ,

1, k = l .
(9)

Therefore, as a consequence of (3), the hyperplane defined by the homogeneous vector
sk contains every vertex of the simplex except Ak ; it is therefore the face opposite to Ak .
Hence, we have the following

Theorem 1. Let A ∈ R
(n+1)×(n+1) be the matrix containing in its k-th column the homo-

geneous coordinates of the vertex Ak (k = 0, . . . , n) of a nondegenerate simplex in R
n,

n ≥ 1. Then, the transpose of the inverse of A, S := (A−1)T , contains the homogeneous
coordinates of the face opposite to Ak in its k-th column. �

The matrix A in the above theorem is guaranteed to be invertible: Assume that A is sin-
gular; then we can express one of the columns of A, say the k-th column, as a linear com-
bination of the remaining columns. Hence, the vertex Ak lies in the subspace spanned by
the rest of the vertices, and the simplex is degenerate, in contradiction with the hypotheses
of the theorem.

4 The feet of the altitudes

In the following, we restrict ourselves to proper simplices, i.e. no vertices are at infinity.
Therefore, the matrix A defined in (6) contains no zeros in its first row. The k-th altitude
of the simplex may be defined as the line connecting the vertex Ak with the absolute point
s0

k := (0, sk1, sk2, . . . , skn)T of the normal of the face opposite to Ak . In general, the line
connecting two points A, B (given by their homogeneous coordinates a, b, respectively)
is the set of points c = λ a + µ b with λ,µ ∈ R, (λ, µ) �= (0, 0). For the k-th altitude
we may choose c = fk := ak − µk s0

k , µk ∈ R, for simplicity. Its foot satisfies sT
k fk = 0

which implies

µk = sT
k ak

sT
k s0

k

. (10)
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Evaluating the numerator by means of (9) and using the explicit expression for the denom-
inator yields

fk = ak − µk s0
k with µk = 1

∑n
j=1 s2

kj

, k = 0, 1, . . . , n (11)

for the foot of the k-th altitude. In order to obtain all feet at once we consider the n + 1
first equations of (11) as the columns of a single matrix equation,

F = A − S0 · diag(µ0, µ1, . . . , µn) , (12)

where F is the matrix with the homogeneous coordinates of the feet as its columns. Fur-
thermore, diag(µ0, . . . , µn) is the diagonal matrix with µ0, . . . , µn as its diagonal ele-
ments. Finally, S0 = (s0

0, s0
1, . . . , s0

n), the matrix of the absolute points of the vectors
orthogonal to the faces, is obtained from S by zeroing out the first row and may be writ-
ten as

S0 = diag(0, 1, . . . , 1) · (A−1)T (13)

as a consequence of (7). We therefore have established

Theorem 2. Let A ∈ R
(n+1)×(n+1) be the matrix containing in its k-th column the homo-

geneous coordinates of the vertex Ak (k = 0, . . . , n) of a nondegenerate proper simplex
in R

n, n ≥ 1. Then S0 defined in (13) is the matrix of the absolute points of the vectors
orthogonal to the faces, and F defined in (12), with µk from (11), has the homogeneous
coordinates of the feet of the altitudes of the simplex as its columns. �

In the case of dimension n = 1, when the simplex is a line segment, the algorithm simply
exchanges the boundary points.

Remark. The use of projective spaces and homogeneous coordinates is widespread when
it comes to deal with simplices. E.g., in [2] it can be seen how proofs of theorems get
shortened and how the duality principle of projective geometry can enter the calculations.

5 An elegant implementation in MATLAB

The concise algorithm (13), (12) may be coded in the language of MATLAB [4] as fol-
lows below. MATLAB is particularly well suited owing to its powerful instructions for the
operations of matrix algebra.

% Given data: columns of A are the homogeneous coordinates
% of the vertices of the simplex. Example in 2 dimensions:

A = [ 1 1 1
-3 3 1
0 1 4];
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% Algorithm

S = inv(A)’; S(1,:) = 0*S(1,:);
F = A - S * diag(1./sum(S.ˆ2)),

% Columns of F are the homogeneous coordinates of the feet.
% The top row of A (preferably ones) is inherited by F.

% Result for the above example of A:

% F = [1.000000000000 1.000000000000 1.000000000000
% 1.615384615385 0.500000000000 1.540540540541
% 3.076923076923 3.500000000000 0.756756756757];

Comments on the code of the algorithm. We use the symbol S for the matrix S0. The
prime causes transposition of a real matrix. The second statement replaces the top row of
the currentS by a row of zeros. The operatordiag fills its argument vector into a diagonal
matrix. The sequence 1./sum(S.ˆ2) computes all values µk for k = 0, 1, . . . , n of
equation (11) by summation over the columns of the matrix of the squared elements of S0.
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