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Let P be a finite planar point set with no three points collinear, i.e. in general position.
A subset Q ⊂ P is called a convex polygon in P if Q forms the vertex set of a convex
polygon. A convex polygon Q ⊂ P is called an empty convex polygon if there is no point
of P in the interior of the convex hull of Q. Denote the area of the convex hull of Q ⊂ P
by S(Q). Let

fk(P) =: max
{ S(Q)

S(P)
: Q is an empty convex k-gon with vertices in P

}
,

fk(n) =: min{ fk(P) : |P| = n, P is in general position}.
A finite set of points in the plane is called in convex position if it forms the set of vertices
of a convex polygon. Let P be a finite set of points in convex position in the plane. Then
a polygon Q with vertices in P is always an empty polygon. Let

f conv
k (n) =: min{ fk(P) : |P| = n, P is in convex position}.

.

Es sei P die Eckenmenge eines konvexen n-Ecks in der Ebene, und es sei S(P) dessen
Flächeninhalt. Wird eine k-elementige Teilmenge Q ⊂ P dieser Ecken ausgewählt,
so überdeckt das zugehörige k-Eck den Bruchteil S(Q)/S(P) der Gesamtfläche. Man
wird versuchen, durch geeignete Wahl von Q diesen Flächenanteil m öglichst gross zu
machen. In dem nachfolgenden Beitrag behandeln die Autoren das folgende Minimax-
Problem: Welcher Bruchteil S(Q)/S(P) l ässt sich, unabhängig von der Form des
Ausgangspolygons, durch geeignete Wahl von Q garantiert erreichen? Beispielsweise
finden die Autoren im Fall |P| = 5 und |Q| = 4, dass das Viereck bei richtiger Wahl
der weggelassenen Ecke mindestens den Bruchteil 2/(5−√

5) des Fünfecks überdeckt.
Eine allgemeine Lösung des hier behandelten Problems wäre wünschbar.
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In [2] the authors studied f conv
3 (n). In this paper we evaluate f conv

4 (n), and more generally,
f conv
n−1 (n).

Theorem 1. f conv
4 (5) = 2

5−√
5

.

Proof . Let P be a convex 5-gon with vertices A, B , C , D, E in clockwise order. Sup-
pose that the 4-gon ABC D is a maximum area quadrilateral in P . Given two triangles,
there exists a unique affine transformation which transforms one triangle into another. So,
without loss of generality, we may assume that A = (0, 0), B = (0, 1), D = (1, 0),

C = (a, b) (a > 0, b > 0). We always assume that b ≥ 1, see Fig. 2. Indeed, when
b < 1, the distance from B to the straight line AD is greater than the distance from C to
the straight line AD, then we can reflect P about a vertical line without changing the ratio
of the areas. See Fig. 1. Relabel the vertices of P to ensure that the distance from C ′ to
the straight line A′D′ is greater than distance from B ′ to the straight line A′D′, and in this
way we come to the case of b ≥ 1.
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Fig. 1 The assumption b ≥ 1

Let Q1, Q2 and Q3 denote the 4-gons ABC D, AB DE and AC DE , respectively, see
Fig. 2. Let f be the line through A and C , and f ′ be the parallel line through D. Similarly,
let g be the line through B and D, and g′ be the parallel line through A. Since Q1 =
ABC D is a maximum area quadrilateral in P , so E lies completely above f ′ and g′. Let
F = f ′ ∩ g′, then F = ( b

a+b , −b
a+b ) and E ∈ �ADF , and hence P is always contained

in the convex 5-gon P ′ = ABC DF . Since b ≥ 1, we have S(Q3) ≥ S(Q2); and since
S(Q1) ≥ S(Q3), we have S(�ABC) ≥ S(�ADE). Suppose E = (x0, y0),

S(�ABC) = a

2
, S(�ADE) = −y0

2
=⇒ a

2
≥ −y0

2
=⇒ y0 ≥ −a.

So E lies above the horizontal line h : y = −a. See Fig. 2, where E does not appear since
its position is depending. The figure shows only the case where F lies below the line h.

Case 1. Suppose F lies above the line h, then −b
a+b ≥ −a, that is b

a+b ≤ a. Notice that
P ⊂ P ′ and so S(P) ≤ S(P ′).

S(Q1) = 1

2
(a + b), S(P ′) = 1

2
(a + b) + b

2(a + b)
. (∗)
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Fig. 2 E ∈ �ADF , Q1 = ABC D, Q2 = AB DE , Q3 = AC DE ,
P ′ = ABC DF , P ′′ = ABC DG , h : y = −a

Subcase 1.1. Suppose b
a+b ≤ a

b , then a
b ≥

√
5−1
2 . By (∗) and b ≥ 1 we have

S(P)

S(Q1)
≤ S(P ′)

S(Q1)
= 1 + b

(a + b)2 ≤ 1 + b2

(a + b)2 = 1 + 1

( a
b + 1)2 ≤ 5 − √

5

2

=⇒ S(Q1)

S(P)
≥ 2

5 − √
5

.

Subcase 1.2. Suppose b
a+b > a

b , then

b

a
>

2√
5 − 1

=⇒ a

a + b
<

3 − √
5

2
.

Recall that b
a+b ≤ a, we have

S(P)

S(Q1)
≤ S(P ′)

S(Q1)
≤ 1 + b

(a + b)2 ≤ 1 + a

a + b
≤ 5 − √

5

2

=⇒ S(Q1)

S(P)
≥ 2

5 − √
5

.
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Case 2. Suppose F lies below the line h (see Fig. 2), then −b
a+b < −a, that is b

a+b > a,
and since E is above the horizontal line h, so S(P) ≤ S(P ′′), where P ′′ = ABC DG is a
5-gon with G = g′ ∩ h. Since g′ : y = −x , h : y = −a, so G = (a,−a).

S(P ′′) = 1

2
(a + b) + 1

2
a.

b

a + b
> a =⇒ b

a + b
>

a

b
=⇒ b

a
>

2√
5 − 1

=⇒ a

a + b
<

3 − √
5

2
.

S(P)

S(Q1)
≤ S(P ′′)

S(Q1)
= 1 + a

a + b
≤ 5 − √

5

2
=⇒ S(Q1)

S(P)
≥ 2

5 − √
5

.

From the above argument, we obtain that for any 5-point set P in convex position we have
f4(P) ≥ 2

5−√
5

and hence f conv
4 (5) ≥ 2

5−√
5

.

Let a =
√

5−1
2 , b = 1, and hence the line h passes through F . Let E = F , then S(Q1)

S(P)
=

a+b
a+b+ b

a+b
= 2

5−√
5

by (∗), so f conv
4 (5) ≤ 2

5−√
5

.

Hence f conv
4 (5) = 2

5−√
5

. �

Theorem 2. f conv
4 (6) ≥ 1

4−√
5

.

Proof . Let P be a convex 6-gon with vertices A1, A2, A3, A4, A5, A6 in clockwise
order. Suppose that the 4-gon Q is a maximum area quadrilateral in P , then Q must be in
one of the forms of Ai Ai+1 Ai+2 Ai+4, Ai Ai+1 Ai+3 Ai+4 or Ai Ai+1 Ai+2 Ai+3, where the
addition in the subscript is modulo 6.

Case 1. Suppose Q = Ai Ai+1 Ai+2 Ai+4.

A1

A2

A3

A4

A5

A6

A1

A2

A3

A4

A5

A6

A1

A2

A3

A4

A5

A6

(a) (b) (c)

Fig. 3 Possible forms of maximum area quadrilaterals in P

Without loss of generality let Q = A1 A2 A3 A5, as shown in Fig. 3(a). Let P1 =
A1 A2 A3 A4 A5, P2 = A1 A2 A3 A5 A6. Then Q is also the maximum area quadrilateral
in P1 and in P2. By Theorem 1, we have

S(P)

S(Q)
= S(P1) + S(P2) − S(Q)

S(Q)
≤ 5 − √

5

2
+ 5 − √

5

2
− 1 = 4 − √

5.
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Thus
S(Q)

S(P)
≥ 1

4 − √
5

.

Case 2. Suppose Q = Ai Ai+1 Ai+3 Ai+4, see Fig. 3(b). By the same argument as in
Case 1 we obtain the required conclusion.

Case 3. Suppose Q = Ai Ai+1 Ai+2 Ai+3, that is, Q is formed by four consecutive vertices
of P . Without loss of generality let Q = A1 A2 A3 A4, as shown in Fig. 3(c). By using
an affine transformation we may assume that A1 = (0, 0), A2 = (0, 1), A4 = (1, 0),
A3 = (a, b) (a > 0, b ≥ 1). See Fig. 4.

Let f be the line through A1 and A3, and let f ′ be the parallel line through A4. Similarly,
let g be the line through A2 and A4, and let g′ be the parallel line through A1. Let F =
f ′ ∩ g′, so F = ( b

a+b , −b
a+b ). Similar to the proof of Theorem 1, here A5, A6 ∈ �A1 A4 F

and A5, A6 lie above the horizontal line h : y = −a. So P must be contained in the
convex 5-gon P ′ = A1 A2 A3 A4 F .

f g

g f

h

F b
a + b , b

a +b

A

G H

1 0 0

A2 0 1

A3 a b

A4 1 0

Fig. 4

Subcase 3.1 Suppose F lies above the line h, then −b
a+b ≥ −a, i.e. b

a+b ≤ a, so A5 and A6
obviously lie above the line h. By the same argument as in Case 1 in proving Theorem 1,
we have

S(P)

S(Q)
≤ 5 − √

5

2
< 4 − √

5 =⇒ S(Q)

S(P)
>

1

4 − √
5

.



On maximum area polygons in a planar point set 93

Subcase 3.2 Suppose F lies below the line h, then −b
a+b < −a, i.e. b

a+b > a, so P must
be contained in the hexagon P ′′ = A1 A2 A3 A4 H G with G = g′ ∩ h and H = f ′ ∩ h,

where G = (a,−a), and H = (1 − a2

b ,−a). The area of P ′′ equals the area of the 4-gon
Q plus the area of the 4-gon A1 A4 H G, hence

S(P ′′) = 1

2
(a + b) + a − a3 + a2b

2b
,

S(P)

S(Q)
≤ S(P ′′)

S(Q)
= 1 + 2a

a + b
− a3 + a2b

(a + b)b
< 1 + 2a

a + b
< 4 − √

5

=⇒ S(Q)

S(P)
>

1

4 − √
5

,

and hence f conv
4 (6) ≥ 1

4−√
5

. �

Lemma A. Let Pn be the set of vertices of a regular n-gon, and let r4(n) =: f4(Pn), then

r4(n) = 4

n sin 2π
n

when n ≡ 0 (mod 4);

r4(n) = 3 cos π
2n + cos 3π

2n

n sin 2π
n

when n ≡ 1 or 3 (mod 4);

r4(n) = 4 cos π
n

n sin 2π
n

when n ≡ 2 (mod 4).

Proof . Suppose that the maximum area quadrilateral ABC D with vertices in Pn divides

a

b

c

d

A

B

C

D

Fig. 5 4 chains on the boundary of convex hull of Pn

the boundary of the convex hull of Pn into four chains ÂB, B̂C , Ĉ D and D̂ A with a, b, c
and d edges, respectively, as shown in Fig. 5.
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First, we prove that any two of these numbers differ at most by 1.

Case 1. Suppose for two adjacent numbers, say, b and c we have c−b ≥ 2. See Fig. 6(a).

Let E be the nearest point of Pn to C in anticlockwise order. Observe that since c −b ≥ 2,

the numbers of points of Pn on Ê D is greater than that on B̂C . S(�DC E) > S(�BC E),
because both triangles have the same base C E , and the distance from D to the straight line
C E is greater than the distance from B to the straight line C E . Then the area of the 4-gon
AB DE is greater than the area of the 4-gon ABC D, contradicting the choice of the 4-gon
ABC D.

(a) b 2, c 4 (b) a c 3, b 2, d

A

B

C

D

E

A

B

C

D

E

F

4

Fig. 6

Case 2. Suppose for two nonadjacent numbers, say, b and d we have d − b ≥ 2. From
Case 1, we need only to consider the cases a = c = b + 1, and d = b + 2, as shown in
Fig. 6(b).

Let E be the nearest point of Pn to C and F be the nearest point of Pn to D in anticlockwise
order. Then S(ABC D) = S(AB E D) < S(AB E F), contradicting the choice of the 4-gon
ABC D.

Therefore, we conclude that a maximal area quadrilateral in Pn splits the boundary of
the convex hull of Pn into four chains whose numbers of edges are {t, t, t, t}, {t, t, t, t +
1}, {t, t, t + 1, t + 1}, {t, t + 1, t + 1, t + 1}, when n ≡ 0, 1, 2, 3 (mod 4), respectively.
An easy computation leads to the claimed formulas. �

Notice that each r4(n) is a decreasing function. Thus we can deduce that

lim
n→∞ r4(n) = 2

π
.

Lemma B. Let B be a compact convex region in the plane and Bk be a largest area k-gon
inscribed in B. Then area(Bk) ≥ area(B) k

2π
sin 2π

k , where equality holds if and only if
B is an ellipse.

From Theorem 2, Lemma A and Lemma B, the following results can be easily obtained:
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Theorem 3. For planar point sets in convex position of size n ≥ 7, we have

2

π
≤ f conv

4 (n) ≤ r4(n).

Theorem 4. 1
4−√

5
≤ f conv

4 (6) ≤ r4(6) = 2
3 .

Theorem 5. f conv
n−1 (n) ≤ 1 − 2(1−cos 2π

n )

n (n ≥ 4).

OV2

V1

V3

Vn

Vn 1

Vn 2

Fig. 7

Proof . Let Pn = V1V2V3 . . . Vn be a regular n-gon with circumradius equal to 1 and
circumcenter at O, then every (n − 1)-gon Q in Pn has the same area. See Fig. 7.

S(Pn) = nS(�V1 OV2) = n

2
sin

2π

n
,

S(Q) = (n − 2)S(�V1OV2) + S(�Vn−2 OVn) = n − 2

2
sin

2π

n
+ 1

2
sin

4π

n

=⇒ S(Q)

S(Pn)
= 1 − 2(1 − cos 2π

n )

n
.

Hence f conv
n−1 (n) ≤ 1 − 2(1−cos 2π

n )

n by the definition of f conv
n−1 (n). �

A few words on why the topic should be discussed might be necessary. The study of exact
algorithms for robot motion planning forms a major subarea of computational geometry,
with connections also to symbolic and algebraic computation. Motion planning is useful
not only for computer control of actual robots but also for assembly planning and to com-
puter animation. A related problem is found in robot motion planning where one might
want to approximate the shape of a robot moving from one room to the next through a
narrow door, the numerical bounds for the ratio of the maximum area quadrilateral to the
robot body area could be a measure of how good an approximation is. For details see [1].
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