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1 Enumerating the rationals à la Cantor

Since Cantor opened the gates of the paradise,1 we know that the set Q of rational numbers
is countable whereas the set of real numbers is uncountable. The enumeration of Q follows

1“No one shall expel us from the Paradise that Cantor has created” are the words of Hilbert about Cantor’s
foundation of set theory.

.

Das kombinatorische Spiel Euklid wurde 1969 von Cole & Davie eingeführt. Zwei
Spieler ziehen abwechselnd aus einer Position (a, b) ∈ N2, wobei der ziehende Spie-
ler ein Vielfaches der kleineren Zahl von der grösseren Zahl zu subtrahieren hat, so
dass das Resultat noch in N2 liegt. Der erste Spieler, der nicht mehr ziehen kann, hat
verloren. Bislang kennt man elementare (Cole & Davie), geometrische (Lengyel) und
zahlentheoretische (Schwartz) Beschreibungen der Gewinnpositionen für Euklid (op-
timales Spiel beider Spieler vorausgesetzt). Die Autoren des nachfolgenden Beitrags
fügen dem eine graphentheoretische Gewinnstrategie hinzu, indem sie Euklid in Be-
ziehung zum Calkin-Wilf Baum setzen. Dieser bemerkenswerte, von Calkin & Wilf
im Jahr 2000 eingeführte Baum generiert durch eine einfache Vorschrift alle positiven
rationalen Zahlen in gekürzter Form genau einmal.
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easily from the following scheme:
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Actually, this scheme gives an enumeration of the set Q+ of all positive rationals. How-
ever, there is a flaw: each element appears infinitely often but only once as a reduced
fraction (i.e., with coprime numerator and denominator); the first appearance is in reduced
form, all others are integer multiples, forming a straight line.

Of course, there are many other enumerations of Q+ (or Q) known; for a nice overview
we refer to Bradley [3]. In this article, we shall investigate the marvellous enumeration of
Calkin & Wilf [4] with respect to an application in game theory.

2 The Calkin-Wilf tree

Consider the binary tree generated by the iteration

a

b
�→ a

a + b
,

a + b

b
, (1)

starting from the root 1
1 . We call the numbers a

a+b and a+b
b the left and the right child of

a
b , respectively; we also say that a

b is the mother of its children. We define the notion of

generation by induction: the root 1
1 forms the first generation; the n + 1-st generation is

the set of all children of elements of the n-th generation. The binary tree obtained from
this iteration will be called the Calkin-Wilf tree. Here are the first generations:
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Calkin & Wilf [4] have shown that this tree contains each positive rational number once
and only once, each of which represented as a reduced fraction. This is much better than
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the enumeration of Q+ by Cantor’s original procedure; it is also superior to many other
enumerations of the rationals (see Bradley [3]). We shall give a sketch of the argument.
First of all, each fraction appears in reduced form. To see this, we note that for coprime
integers a and b also the linear combination a + b is coprime with a and b, respectively.
Since we start from the root 1

1 , coming from the most coprime pair of integers, by induction
each element of the tree is given in reduced form. For the other claims we define the length
of a

b ∈ Q+ (with a, b ∈ N) by �( a
b ) = a + b. Now we want to show that each positive

rational eventually appears in the tree. For this purpose we assume that a
b is a positive

reduced fraction which does not appear in the tree and which has minimal length among
all fractions from Q+ which do not appear. Then it follows from (1) that also the mother
of a

b does not appear. Since the mother has length either b or a, both being less than
�( a

b ) = a + b, we get the desired contradiction. Hence, any positive reduced fraction
appears at least once. By a similar argument one can show that each positive rational
number appears only once (we leave this claim to the interested reader).

Reading the Calkin-Wilf tree line by line, we find
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This sequence satisfies the iteration

x1 = 1, xn+1 = (2[xn] + 1 − xn)
−1,

where [x] denotes the largest integer less than or equal to x . This observation is due to
Newman (cf. [9]), answering a question of Knuth), resp. Vandervelde & Zagier (cf. [11]).

Actually, the Calkin-Wilf enumeration of Q+ was already given by Stern fifteen years
before Cantor, as recently pointed out by Reznick [10]. In 1858 Stern [12] introduced a
sequence s(n) defined by the recursion

s(0) = 0, s(1) = 1, and s(2n) = s(n), s(2n + 1) = s(n) + s(n + 1).

He proved that two consecutive elements are coprime and that for any pair a, b of positive
coprime integers, there is a unique n such that a = s(n) and b = s(n + 1). It is easy to see
that the sequence s(n)

s(n+1)
for n ∈ N is identical with (2).

The Calkin-Wilf tree has a lot of interesting features. In this note, we are interested in
a new application. We will show that this tree serves as a perfect model for a certain
Nim-type game.

3 The game Euclid

The game Euclid was introduced by Cole & Davie [5]. It is played by two persons, and a
position consists of a pair (a, b) of positive integers. The players alternate moves, where
a move consists of decreasing the larger number in the current position by any positive
multiple of the smaller number, as long as the result is positive. The first player who cannot
make a move loses. Cole & Davie have determined those pairs (a, b) which guarantee the
first player a win with optimal play.
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Theorem 1. The first player has a winning strategy if and only if the ratio of the larger
number to the smaller in the starting position is greater than G := 1

2 (
√

5 + 1).

The number G is the golden ratio. There is a nice geometric argument to prove Theorem
1 due to Lengyel [7] which we briefly reproduce here. Define g := 1

G = 1
2 (

√
5 − 1). We

consider the open cone

C = {(x, y) ∈ R2 : x, y > 0, g <
y
x < G}. (3)

The goal of Euclid is to move to the diagonal y = x since then the other player cannot
move. Indeed, for any position (a, b) off the diagonal there is only one direction in the
plane in which one can make a move; this is horizontal, if a > b, or vertical, otherwise.
Further, for every a, there are exactly a points (x, y) ∈ C with x = a (this follows from
the fact that both g and G are irrational). Thus, if a < b and (a, b) �∈ C, then there is
a unique positive integer k such that (a, b − ak) ∈ C. Moreover, given a position (a, b)

inside C with a �= b, there is only one possible legal move which leads outside C; if a = b,
the player cannot move and has lost. Hence, if the starting position (a, b) lies outside the
cone C, then, by optimal play, the first player can always realize a move into C which then
forces the second player to move out from C. The game terminates with a position (a, a)

for the second player. This yields the assertion of Theorem 1.

It is not difficult to show that the chance for the first player to win from a randomly chosen
position in a large square (0, N]2 is approximately equal to g = 0.61803 . . . on average.

In the next section we shall give a graph-theoretical characterization of all winning po-
sitions for the second player based on the Calkin-Wilf tree. Actually, Lengyel [7, 8]
suggested to use the related Stern-Brocot tree in order to compute the Sprague-Grundy
function for Euclid.

4 A winning strategy based on the Calkin-Wilf tree
If a game starts from a position (a, b) where a and b have a greatest common divisor
d > 1, then it is easily seen that optimal play for (a, b) is equivalent to optimal play for
the reduced position (a/d, b/d). In the sequel we therefore may assume that the starting
position (a, b) consists of coprime integers a and b.

We introduce some vocabulary. Given any left child a
b in the Calkin-Wilf tree, we denote

by R( a
b ) the right subtree which contains all right offsprings of a

b and a
b itself:
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b
,

a + b

b
,
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b
,

a + 3b

b
,

a + 4b

b
, . . . ;

we say that R( a
b ) is the right branch of a

b . Similarly, for any right child a
b , we denote by

L( a
b ) the sequence of all left children

a

b
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a

a + b
,

a

2a + b
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3a + b
,

a

4a + b
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and call it the left branch of a
b . For the root 1

1 , the left and the right branch are given by the
numbers 1

n and n
1 for n ∈ N, respectively. Obviously, any reduced fraction a

b in the tree is
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contained in some left and some right branch which both meet in a
b . Thus, each fraction is

uniquely determined by two intersecting branches.

Without loss of generality we may assume that a > b. To see this, note that the sequence
of elements in any fixed generation of the Calkin-Wilf tree is symmetric with respect to
the middle (this follows easily from the generating law (1) by induction). Of course, the
same symmetry holds for the positions (a, b) in the game Euclid. Now assume that we
are given a position (a, b). We may think of this position as a reduced fraction in the
Calkin-Wilf tree. Since we assume a > b, it follows that a

b is a right child (this follows
immediately from (1)). Obviously, all possible moves from (a, b) go to (a − kb, b) for
some 1 ≤ k ≤ [a/b]. Hence, the possible moves are exactly represented by the ancestors
of a

b in the right branch that contains a
b . Similarly, if a < b, then all possible moves from

(a, b) go to (a,−ka + b) for 1 ≤ k ≤ [b/a] and these are exactly the elements of previous
generations in the left branch containing a

b .

The path from the quotient of the numbers in the starting position to the root in the Calkin-
Wilf tree consists of path segments each of which is part of a left or a right branch (more
precisely: any non-empty intersection of the path with a left or right branch is called a line
segment). We call a path segment non-trivial if it contains at least two edges, resp. three
elements. We enumerate the positions in the game as follows: the starting position is the
first position and any move increases the number assigned to the current position by one.

We shall prove the following characterization of the winning positions:

Theorem 2. The first player has a winning strategy if and only if either the path from the
quotient of the numbers in the starting position to the root in the Calkin-Wilf consists only
of an odd number of trivial path segments or if the first non-trivial path segment appears
at an odd position.

Proof . We assume that (a, b) with coprime a, b is the starting position. Obviously, the
second player wins if the game is started from the position (1, 1). Now suppose that the
path in question consists only of trivial path segments. Clearly, since there are no choices
for the moves of the players, the elements along this path are alternate winning positions
for the two players. Hence, the first player has a winning strategy if and only if the number
of these path segments is odd. In the remaining case, there is always at least one non-trivial
path segment. Obviously, the player facing a single non-trivial path segment has a choice
for his move; he can move to the last or the last but one element in this path segment
and, as we have already noticed, exactly one of these two positions is a winning position.
Now suppose that there are m non-trivial path segments and m ∈ N. Then the assertion
is proved by induction on m. We assume the statement is true for m − 1. By the same
reasoning as in the case m = 1, the first player facing a non-trivial path segment can move
to the last or the last but one element of this path segment. By the right choice, he is the
player facing the next non-trivial path segment. By the induction hypothesis, this leads to
a winning strategy. This proves Theorem 2. �

By Theorem 1, all fractions in the Calkin-Wilf tree for which the first player has a winning
strategy (as described in the Theorem 2) are less than g or greater than G in value.
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5 Interlude: Continued fractions

It is well-known that each positive rational number x has a representation as a finite (reg-
ular) continued fraction

x = a0 + 1

a1 + . . .+ 1

am−1+ 1

am

with a0 ∈ N ∪ {0} and a j ∈ N for 1 ≤ j ≤ m. Actually this is nothing but the Euclidean
algorithm. In order to have a unique representation, we assume that am ≥ 2 if m ∈ N. We
shall use the standard notation x = [a0, a1, . . . , am]. In the sequel, we shall also consider
some infinite continued fractions, as for example G = [

1̄
]
, where 1̄ indicates the periodic

sequence where all partial quotients are equal to 1. Infinite continued fractions represent
irrational numbers. For more information about continued fractions and their use in the
theory of diophantine approximation we refer to Steuding [13].

Back to the tree! Bird, Gibbons & Lester [2] have shown that the n-th generation of the
Calkin-Wilf tree consists exactly of those rationals having a continued fraction expansion
[a0, a1, . . . , am] for which the sum of the partial quotients a j is equal to n. This follows
easily from iteration (1) with which the tree was built; notice that this claim is essentially
already contained in Lehmer [6] (this was also observed by Reznick [10]).
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�������������� [2]
																

[0, 3]




 [1, 2]
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One can use the approach via continued fractions to locate any positive rational in the tree.
Given a reduced fraction x in the Calkin-Wilf tree with continued fraction expansion

x = [a0, a1, . . . , am−2, am−1, am],
we set up the path

Lam−1Ram−1Lam−2 · · · La1Ra0 if m is odd, and (4)

Ram−1Lam−1Ram−2 · · · Ra1La0 if m is even; (5)

note that am − 1 ≥ 1 for m ∈ N. The notation Ra with a ∈ N ∪ {0} means to go a steps to
the right, whereas Lb with b ∈ N ∪ {0} stands for b steps to the left. Then, starting from
the root 1

1 and following this path from left to right, we end up with the element x . It is
not difficult to prove this rule. Actually, this law contains much of the mathematics behind
the Calkin-Wilf tree.

Back to the game! There is another classification of the winning positions in the game
Euclid due to R.E. Schwartz (cf. [7]) in terms of the continued fraction expansion. It
simply says that the first player who has a choice to move wins:
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Theorem 3. Let (a, b) with a < b be the starting position and denote by [a0, a1, . . . , am ]
the continued fraction expansion of b

a . Then the first player has a winning strategy if and
only if the first partial quotient a j that is different from 1 appears at a position with an
even index j .

Hence the winning positions (a, b) with b > a for the second player are exactly repre-
sented by those continued fraction expansions b

a = [a0, a1, . . . , am], where the first partial
quotient a j �= 1 appears at a position with odd index j . This corresponds via Theorem 2
with the path to b

a which is explicitly given by either (4) or (5).

6 Playing Euclid on the Calkin-Wilf tree

One may have the idea to play Euclid on the Calkin-Wilf tree in the following way: some
positive integer n is chosen (randomly) and then a position (a, b) from one of the first n
generations of the Calkin-Wilf tree. Alkauskas & Steuding [1] have shown that the mean
of the elements of the n-th generation of the Calkin-Wilf tree is tending to 3

2 as n → ∞.
Thus one might think that the second player has better chances in this variant of Euclid
since the mean 3

2 corresponds to a straight line in the cone C, defined by (3), the region of
winning positions for the second player. However, this is not true. The mean being equal
to 3

2 does not mean that the elements are clustered around 3
2 . Actually, the converse is true!

We shall give an elementary proof that the first player wins two thirds of the games. The
argument does not involve anything about the distribution function as in [1] and, moreover,
has the advantage to give an exact expression for the number of wins of the first player
provided optimal play.

Denote by fn and gn the number of elements in the n-th generation which are a winning
position for the first and for the second player, respectively. We observe that

n 1 2 3 4 5 6 7

fn 0 2 2 6 10 22 42

gn 1 0 2 2 6 10 22

Clearly,
fn + gn = 2n−1.

It is easy to see that if a
b gives a win for the first player, then also one of its children is

a winning position for the first player while the other child yields a win for the second
player. If a

b is a winning position for Player 2, both children are a winning position for the
first player. To see this we note

a

b
> G ⇐⇒ a + b

b
= 1 + a

b
> G + 1, g <

a

a + b
< G,

g <
a

b
< G ⇐⇒ a + b

b
= 1 + a

b
> g + 1 = G,

a

a + b
< g
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(we leave the easy verification to the interested reader). This leads to the recursion formu-
lae

fn+1 = fn + 2gn and gn+1 = fn for n ∈ N.

Substituting the second into the first, we get

fn+1 = fn + 2 fn−1 and 2n = fn+1 + fn .

Hence, fn+1 = 2n − fn = 2n − (2n−1 − fn−1). By induction

fn+1 =
n−1∑

j=0

(−1) j 2n− j .

Evaluating this geometric series, we obtain explicit expressions for fn and gn:

Theorem 4. For n ∈ N,

fn+1 = 2

3
(2n − (−1)n) and gn+1 = 1

3
(2n + (−1)n2).

Clearly, this shows that the winning chances for the first player are approximately two
thirds and for the second player approximately one third of the games.

7 A variation of Euclid
It might be interesting to play the following variant: a pair of positive integers (a, b)

is chosen by taking an element a
b from some fixed generation of the Calkin-Wilf tree.

Each pair (a, b) corresponds to a mother of two children. As we have already pointed
out in the previous section, either both are winning positions for the first player or one
is a winning position for the first player and one for the second. The second player may
choose which of the children of a

b is the starting position for the first player. To analyze the
chances in this game, let us count by Fn the number of mothers for which both children
of the n-th generation are winning positions for the first player and denote by Gn the
number of mothers with, say, mixed children. Then Gn = 2n−2 − Fn . Obviously, Gn =
gn = fn−1, where the numbers gn and fn were defined in the previous section. Using
2n−2 = fn−1 + gn−1, it follows that Fn = gn−1 = fn−2. By Theorem 4 it follows that
now the winning chances for the second player are two thirds.
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