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A Heron triangle is a triangle with integral sides and integral area. The circumradius and
circumdiameter of a triangle are respectively the radius and the diameter of its circumcir-
cle. In this article we will give a necessary and sufficient condition for a positive integer
to be the circumradius or the circumdiameter of some Heron triangle. It is stated in the
following theorem:

Theorem 1. Let k be a positive integer. Then the following are equivalent:

(1) There is a Heron triangle with circumradius k.
(2) There is a Heron triangle with circumdiameter k.

(3) There is a prime divisor p of k satisfying p = 1 mod 4.

This theorem generalizes the results of Kramer and Luca [2, Proposition 6] and Aassila
[1, pp. 145-146]. They give identical proofs for the implication (3) = (1). For the
converse, Aassila had already conjectured that no prime p satisfying p = 11 mod 12 is
the circumradius of a Heron triangle. This conjecture was proven by Kramer and Luca,

Ein Dreieck wird Heronsches Dreieck genannt, wenn seine Seitenléngen und sein
Flacheninhalt ganzzahlig sind. Bekanntlich stellt die Heronsche Formel einen Zu-
sammenhang zwischen den Seitenldngen und dem Fldcheninhalt her. Verkniipft man
auch noch den Umkreisdurchmesser mit diesen Grossen, so liegt die Frage nahe, wel-
che ganzen Zahlen k als Umkreisdurchmesser eines Heronschen Dreiecks vorkommen
konnen. Es zeigt sich, dass dariiber Teilbarkeitseigenschaften modulo 4 der Primtei-
ler von k entscheiden. Fiir den Beweis werden nur elementare Kenntnisse der Zahlen-
theorie und zwei elementargeometrische Formeln fiir den Flacheninhalt eines Dreiecks
benutzt. Offen bleibt die Frage, welche rationalen Zahlen Umkreisdurchmesser eines
Heronschen Dreiecks sein knnen.
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who showed that in fact no power of a prime p with p = 2 or p = 11 mod 12 is the
circumradius of a Heron triangle.

Question. The question of which rational numbers occur as the circumdiameter of a
Heron triangle remains open. It follows from Theorem 1 that if d is such a number, then
there is a prime divisor p of the numerator of d that satisfies p = 1 mod 4. We leave it
as an exercise to the reader to show that every positive integer is the denominator of the
circumdiameter of some Heron triangle.

To prove the implication (3) = (1) of Theorem 1, papers [1] and [2] take any positive
integer k with a prime divisor p as in (3). Both first show that there is a triangle with
circumradius p that is Pythagorean, i.e., right-angled and with integral sides. After scaling
by a factor k/ p they obtain a Pythagorean triangle with circumradius k. It is easy to show
that every Pythagorean triangle has integral area and is thus a Heron triangle. The new
implication (1) = (3) of Theorem 1 tells us that among all Heron triangles there are no
more integral circumradii than among just the Pythagorean triangles.

The construction above only yields a triangle with relatively prime sides if the integer k is
prime. This leaves a rather unsatisfactory feeling, which is resolved by the following the-
orem. It gives necessary and sufficient conditions for an integer to be the circumdiameter
of some Heron triangle with sides that are relatively prime to each other. Theorem 1 will
follow as a consequence.

Theorem 2. Let d be a positive integer. Then the following are equivalent:

(1) There is a Pythagorean triangle with circumdiameter d and sides a, b, and c satisfy-
ing gcd(a, b) = ged(a, ¢) = ged(b, c) = 1.

(2) There is a Heron triangle with circumdiameter d and sides a, b, and c satisfying
gcd(a, b) = ged(a, ¢) = ged(b, c) = 1.

(3) There is a Heron triangle with circumdiameter d and sides a, b, and c satisfying
gcd(a, b,c,d) = 1.

(4) There is a triangle with circumdiameter d and integral sides a, b, and c satisfying
gcd(a, b, c,d) = 1.

(5) We have d > 1 and every prime divisor p of d satisfies p = 1 mod 4.

(6) There are positive integers x and y with x even and gcd(x, y) = 1, such that d can
be written as d = x* + y>.

All we will use is some elementary number theory and two formulas. Heron’s formula
(4A)2=(a+b+c)(a+b—c)(a—b+c)(—a+b+c) (1)

relates the area A of a triangle to the lengths a, b, and ¢ of its sides. The circumdiameter
d is related to these quantities through the equation

2Ad = abc. (2)

Remark. In Lemma 3 we will deduce from Heron’s formula (1) that any triangle with
integral sides and rational area is a Heron triangle. Together with (2) this proves the
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implication (4) = (3) of Theorem 2. The fact that (2) implies (1) is a priori not obvious.
Neither is the implication (3) = (2), as a triangle with sides a, b, ¢, and circumdiameter d
may satisfy ged(a, b, c,d) = 1 evenif a, b, and c have a divisor in common. The triangle
with sides 15, 15, 24, and area 108, for example, has circumdiameter 25. By Theorem 2
the existence of this example does imply that there is a triangle with circumdiameter 25
whose sides are relatively prime. In this case, for d = 25, the triangle with sides 7, 24,
and 25 satisfies all conditions of (1), and therefore also those of (2).

The following lemmas will be useful in proving Theorem 1 and Theorem 2.

Lemma 3. Any triangle with integral sides and rational area is a Heron triangle.

Proof. The quantity in (1) is both an integer and the square of a rational number. Hence, it
is the square of the integer 4A. Equation (1) can be rewritten as (4A)2 = 4b%c? — (a* —
b* — )%, Since —1 is not a square modulo 4, the quantity a*> — b> — ¢? is even. Therefore,
as the parity of any integer, its negative, or its square are all the same, the four factors in
the right-hand side of (1) are even as well, and the quantity in (1) is divisible by 16. It
follows that A2, and thus A, is integral. O

Note that it follows from the proof of Lemma 3 that the perimeter of any Heron triangle is
even.

For any prime p and any integer x, let v, (x) denote the valuation of x at p, i.e., the largest
integer m for which p™ divides x. Then v, extends uniquely to a group homomorphism
from the group Q* of nonzero rational numbers to the group Z of integers.

Lemma 4. Let p be a prime satisfying p % 1 mod 4. Let s,t, and m be integers with
m > 0. Then p*™ divides s*> + t* if and only if p™ divides both s and t.

Proof. The “if’-part is obvious. For the “only if”-part, let n be the largest integer for which
p" divides both s and 7. It suffices to show m < n. By symmetry we may assume p"*! { 5.
Set s’ = sp~ and ¢’ = tp~". Then we have s’,¢ € Z and p { s, so ged(s’, p?) = 1.
From the Euclidean algorithm we find integers x, y such that xs’ + yp* = 1, i.e., xs' =
1 mod p2. Now from p>"|s? + t*> we find p>""~™|s’> + t’>. Suppose m > n. Then we
conclude m —n > 0, so p?|s’> + 2, and we find 1> = —s’> mod p?. Therefore we have
(xt)? = —(xs)> = —1 mod p?. This contradicts the fact that —1 is neither a square
modulo 4, nor modulo primes ¢ satisfying ¢ = 3 mod 4. We conclude m < n, which is
what we wanted. O

We are now ready to prove our theorems.

Proof of Theorem 2. Reduction modulo 4 shows that at least one of the sides of a
Pythagorean triangle other than the hypotenuse is even. Therefore, every Pythagorean
triangle has integral area, which proves implication (1) = (2). The implications (2) =
(3) = (4) are obvious. For (4) = (5), let a, b, and c be the sides of a triangle as
in (4). Because the equilateral triangle with sides 1 does not have integral circumdi-
ameter, we get max(a, b,c) > 1. The largest chord of a circle being a diameter, we
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find d > max(a,b,c) > 1. Let p be any prime divisor of d and suppose p satisfies
p # 1 mod4. Without loss of generality, we may assume v,(a) > vp(b) > vp(c).
As p does not divide gcd(a, b, ¢), we have v,(c) = 0. By Lemma 3 the rational
area A = abc/(2d) is integral. This implies that p divides abc, so p divides a. Set
m = v,(2a) > 0. After rewriting (1) as (4A4)? + (a* + b* — ¢?)? = 4a’b?, we see that
p*™ divides (4A)%+ (a®>+b*—c?)?. By Lemma 4 this implies p™|4 A and p™|a®+b*—c>.
Hence, p divides b? — ¢2, and we find vp(b) = vp(c) = 0. We obtain the contradiction
m = vp(2a) = vp(2abc) = vy(4Ad) > v,(4A) > m and conclude that p satisfies
p = 1 mod 4. The implication (5) = (6) is a well-known result, see [3, Theorem 5.15
and its proof]. For (6) = (1), let x and y be as described. Then the triangle with sides
a =2xy,b=|x?>—y?,and ¢ = x> + y? satisfies the requirements of (1). O

Corollary 5. Suppose the integer d is the circumdiameter of a triangle with integral sides
a, b, and c. Let p be a prime satisfying p # 1 mod 4 and setm = v, (d). Then p™ divides
gcd(a, b, c).

Proof. After scaling the triangle if necessary, we may assume gcd(a, b, ¢, d) = 1. Then
Theorem 2 gives m = 0. (]

Proof of Theorem 1. For (1) = (2), let a, b, and ¢ be the sides of a Heron triangle with
circumradius k. Then the circumdiameter 2k is even and by Corollary 5, so are a, b,
and c. The triangle with sides a/2, b/2, and ¢/2 is a Heron triangle by Lemma 3 and
has circumdiameter k. For (2) = (3), let a, b, and c be the sides of a Heron triangle
with circumdiameter k. Set r = gcd(a, b, ¢, k). Then the Heron triangle with sides a/r,
b/r, and c/r has circumdiameter k/r and we have gcd(a/r,b/r,c/r,k/r) = 1. From
Theorem 2 we find k/r > 1, so k/r has a prime divisor p, which by the same theorem
satisfies p = 1 mod 4. For (3) = (1), let p and k be as in (3). According to Theorem 2
there is a Heron triangle with circumdiameter p. Multiplication by 2k/p yields a Heron
triangle with circumradius k. O
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