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1 Introduction and preliminaries

If points are marked on each side of a planar triangle, one on each side (or on a side’s
extension), then the three circles (each passing through a vertex and the marked points
on the adjacent sides) are concurrent at a point M . This interesting fact was first proved
and published by Augueste Miquel [3] in 1838, see also Weisstein [4] for further details
and extensions. This result is well-known in planar geometry as Miquel’s theorem, and M
is called the Miquel point. However, much less known (even amongst geometers) is the
following multidimensional generalization of Miquel’s theorem: If one point is marked on
each of the d(d + 1)/2 edges of a d-simplex

S(x0, x1, . . . , xd) =
{

x0 +
d∑

i=1

µi (xi − x0) :
d∑

i=1

µi ≤ 1, µi ≥ 0, i = 1, . . . , d
}

(1)

.

Der Satz von Miquel ist ein klassisches Resultat der Elementargeometrie: Wird auf
jeder Seite eines gegebenen Dreiecks oder deren Verlängerung ein Punkt beliebig
festgelegt, und wird durch jeweils eine Ecke und die beiden markierten Punkte auf
den Nachbarseiten ein Kreis gezeichnet, so schneiden sich diese drei Kreise in einem
Punkt. In der vorliegenden Arbeit wird mit einfachen Hilfsmitteln der linearen Algebra
erstmals ein vollständiger Beweis der Verallgemeinerung des Miquelschen Satzes auf
d-dimensionale Simplizes angegeben: Wird auf den d(d+1)/2 Kanten je ein Punkt be-
liebig markiert, dann haben die d +1 Kugeln, wovon jede durch je einen Eckpunkt und
die markierten Punkte auf den d in diesen Eckpunkt einlaufenden Kanten festgelegt
wird, genau einen Punkt gemeinsam.
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with positive volume and a sphere Si is drawn through each vertex xi and the points marked
on the d edges which meet in xi , then these d + 1 spheres Si , i = 0, 1, . . . , d , all meet in
a point M which will also be called Miquel’s point in this note. By the best of the author’s
knowledge the only known proof of this result seems to be that given by Konnully [2].
Konnully’s proof is based on the fact that there exists a common orthogonal sphere with
respect to the so-called Miquel spheres S0, S1, . . . , Sd and it is shown that the radius of
this sphere equals zero. However, such a sphere does not always exist even in the planar
case, namely if the unique point which has the same circle power w.r.t. three pairwise
non-concentric circles lies in the interior of each of these circles.

The aim of the present note is to provide a rigorous analytical proof which requires only
simple facts from analytic geometry and linear algebra. As a by-product we obtain a family
of upper bounds of Gram’s determinant (including Hadamard’s inequality) which seems
to be of interest in its own right. This auxiliary result in Section 3 is valid in all Euclidean
vector spaces.

It should be mentioned that an analogous construction with points marked on the (d − 1)-
faces (instead of on the edges) of the simplex does in general not yield a common point
that belongs to all spheres.

Let the points of the Euclidean space R
d be represented by column vectors x =

(x1, . . . , xd )′ having the Euclidean norm ‖x‖ = √〈x, x〉, where the scalar product 〈·, ·〉
is defined by

〈y, z〉 = y′z = y1 z1 + . . . + yd zd

for

y = (y1, . . . , yd)′ and z = (z1, . . . , zd )′.

Furthermore, we recall the well-known fact from analytic geometry that the circumsphere
of the d-simplex (1) consists of all points x ∈ R

d satisfying the equation

∣∣∣∣∣∣
‖x‖2 ‖x0‖2 ‖x1‖2 · · · ‖xd‖2

x x0 x1 · · · xd
1 1 1 · · · 1

∣∣∣∣∣∣
= 0 , (2)

where the left-hand side is for a (d + 2) × (d + 2) determinant.

Without loss of generality, we shall assume the vertex x0 of the d-simplex (1) to coincide
with the origin o = (0, . . . , 0)′ and the vertices xi = (x1i , . . . , xdi)

′, i = 1, . . . , d , to be
linearly independent vectors, i.e.

� := det X 
= 0 , (3)

where X = (x1, . . . , xd) denotes the quadratic matrix with columns x1, . . . , xd.

For 0 ≤ i < j ≤ d , let xij be a fixed point on the edge joining the vertices xi and xj
being distinct from its end-points, i.e. xij = xi + λi j (xj − xi) for some λi j /∈ {0, 1}. For
notational ease put λ j i = 1 − λi j for i < j and λii = 1/2 for i = 0, 1, . . . , d .
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In accordance with (2), the unique d-sphere S0 passing through the origin o and the points
x01, . . . , x0d consists of all points x = (x1, . . . , xd )′ ∈ R

d satisfying

�0(x) :=

∣∣∣∣∣∣∣∣∣∣∣

‖x‖2 0 λ2
01‖x1‖2 · · · λ2

0d‖xd‖2

x1 0 λ01x11 · · · λ0d x1d
...

...
...

. . .
...

xd 0 λ01xd1 · · · λ0d xdd

1 1 1 · · · 1

∣∣∣∣∣∣∣∣∣∣∣

= 0 .

Since
∏d

i=0 λ0i 
= 0, the latter equation is equivalent to
∣∣∣∣∣∣∣∣∣

‖x‖2 λ01‖x1‖2 · · · λ0d‖xd‖2

x1 x11 · · · x1d
...

...
. . .

...

xd xd1 · · · xdd

∣∣∣∣∣∣∣∣∣
= 0 . (4)

Likewise, a point x = (x1, . . . , xd)′ ∈ R
d belongs to the unique d-sphere Si containing

the vertex xi and the marked points x0i, . . . , xi−1,i, xi,i+1, . . . , xid on the adjacent edges if
and only if

�i (x) :=

∣∣∣∣∣∣∣∣∣∣∣

‖x‖2 ‖xi‖2 λ2
0i‖xi‖2 ‖xi + λi j (xj − xi)‖2

x1 x1i λ0i x1i x1i + λi j (x1 j − x1i )
...

...
...

...

xd xdi λ0i xdi xdi + λi j (xd j − xdi)

1 1 1 1

∣∣∣∣∣∣∣∣∣∣∣

= 0

︸ ︷︷ ︸
j∈{1,...,d}\{i}

for i = 1, . . . , d .

By appealing to the well-known transformation rules for determinants we obtain

�i (x) = (λ0i − 1)

∣∣∣∣∣∣∣∣∣∣∣

‖x‖2 − λ2
0i‖xi‖2 (1 + λ0i )‖xi‖2 λ0i‖xi‖2 ‖xi + λi j (xj − xi)‖2

x1 − λ0i x1i x1i 0 x1i + λi j (x1 j − x1i)
...

...
...

...

xd − λ0i xdi xdi 0 xdi + λi j (xd j − xdi)

0 0 −1 1

∣∣∣∣∣∣∣∣∣∣∣
︸ ︷︷ ︸

j∈{1,...,d}\{i}

= (λ0i − 1)
∏
j 
=i

λi j

∣∣∣∣∣∣∣∣∣∣∣

‖x‖2 − λ2
0i‖xi‖2 cii λ0i‖xi‖2 ci j

x1 − λ0i x1i x1i 0 x1 j
...

...
...

...

xd − λ0i xdi xdi 0 xd j

0 0 −1 0

∣∣∣∣∣∣∣∣∣∣∣

,

︸︷︷︸
j∈{1,...,d}\{i}
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where

ci j := ‖xi + λi j (xj − xi)‖2 − ‖xi‖2

λi j
+ (

1 + λ0i
) ‖xi‖2

= λ0i ‖xi‖2 + ‖xj‖2 − λ j i ‖xi − xj‖2 for i, j = 1, . . . , d .

The latter equality follows by using the identity ‖u − v‖2 = ‖u‖2 +‖v‖2 − 2 〈u, v〉. Since
cii = (1+λ0i ) ‖xi‖2 we may simplify the previous determinant by multiplying the second
column by λ0i and adding it to the first column.

Consequently, in view of λi j /∈ {0, 1} for i 
= j , the equation �i (x) = 0 can be ex-
pressed as

∣∣∣∣∣∣∣∣∣

‖x‖2 + λ0i‖xi‖2 ci1 · · · cid

x1 x11 · · · x1d
...

...
. . .

...

xd xd1 · · · xdd

∣∣∣∣∣∣∣∣∣
= 0 for i = 1, . . . , d . (5)

Obviously, the set of points x ∈ R
d satisfying both equations (4) and (5) coincides with

the (d − 1)-dimensional sphere S0 ∩ Si . By subtracting equation (4) from equation (5)
and applying the summation law for determinants differing in only one row we obtain the
linear equation

Di (x) :=

∣∣∣∣∣∣∣∣∣

λ0i‖xi‖2 ci1 − λ01‖x1‖2 · · · cid − λ0d‖xd‖2

x1 x11 · · · x1d
...

...
. . .

...

xd xd1 · · · xdd

∣∣∣∣∣∣∣∣∣
= 0

that holds for all x = (x1, . . . , xd)′ ∈ R
d belonging to the (uniquely determined) hyper-

plane Hi containing the (d − 1)-sphere S0 ∩ Si . Combining the equations Di (x) = 0 ,
i = 1, . . . , d , yields a system of d linear equations whose solution (if it exists!) coincides
with the point of intersection of the hyperplanes H1, . . . , Hd .

To find this point we introduce the matrix A� = (ai j )
d
i, j=1 with entries

ai j := ci j − λ0 j‖xj‖2 = λ0i ‖xi‖2 + (1 − λ0 j ) ‖xj‖2 − λ j i ‖xi − xj‖2 . (6)

Let us first note the remarkable fact that, in view of λi j +λ j i = 1 for i 
= j and λii = 1/2,

ai j + a j i = ‖xi‖2 + ‖xj‖2 − (λi j + λ j i ) ‖xi − xj‖2 = 2 〈xi, xj〉 for i, j = 1, . . . , d ,

which can be expressed concisely by

1

2

(
A� + A′

�

) = G(X) := ( 〈xi, xj〉 )d
i, j=1 , (7)

where G(X) and det G(X) are called Gram’s matrix and Gram’s determinant, respectively,
of the vectors x1, . . . , xd. In R

d we have G(X) = X′X and thus det G(X) = �2. On the
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other hand, the relation (7) is meaningful in any real vector space V on which a symmetric,
positive definite, bilinear form 〈·, ·〉 – briefly called scalar product – is defined. Such vector
spaces are usually called Euclidean vector spaces.

Proposition. For arbitrary linearly independent vectors x1, . . . , xd ∈ R
d and real num-

bers λi j , i, j = 0, 1, . . . , d , satisfying λi j +λ j i = 1 and λi j /∈ {0, 1} for i, j = 0, 1, . . . , d,
there exists a unique point of intersection H1 ∩ . . . ∩ Hd = x∗ = (x∗

1 , . . . , x∗
d )′, which is

given by
x∗ = X A−1

� xλ with xλ = (λ01 ‖x1‖2, . . . , λ0d ‖xd‖2)′ . (8)

The first step in proving this result is to show that x = (x1, . . . , xd )′ obeys the linear
equations Di (x) = 0 for i = 1, . . . , d if and only if it satisfies the equation A� X−1 x =
xλ. This is left to the reader as an exercise. To see the invertibility of the matrix A� we
use (7) and decompose A� as follows:

A� = B� + G(X) with B� = 1

2

(
A� − A′

�

)
. (9)

Here the matrix B� is skew-symmetric, i.e. B′
� = −B� . This skew-symmetry and

the positive definiteness of the Gram matrix G(X) show the quadratic form x′ A� x =
x′ G(X) x to be strictly positive for any x 
= o. This in turn implies A� x 
= o for any x 
=
o, which is equivalent to det A� 
= 0 for all λi j satisfying λi j + λ j i = 1. This combined
with a simple continuity argument tells us that det A� < 0 contradicts det G(X) > 0,
leaving as the only possibility det A� > 0. By the same argument we get det

(
B� +

α G(X)
)

> 0 for any α > 0, entailing det B� ≥ 0 by letting α ↓ 0. However det B�

may take positive values only for even d ≥ 2 due to the very definition of skew-symmetry.
Moreover, we shall bound det A� uniformly from below by Gram’s determinant det G(X)

in Section 3.

Finally, note that the proposition does not answer the question whether x∗ ∈ Si holds for
some or even all i = 0, 1, . . . , d . This will be the subject of the next section.

2 The main result and its proof

Theorem. Under the conditions of the above proposition the point x∗ given in (8) belongs
to each of the spheres Si , i = 0, 1, . . . , d, that is, x∗ is the unique point of intersection
S0 ∩ S1 ∩ . . . ∩ Sd . In other words, x∗ coincides with Miquel’s point M of the simplex
S(o, x1, . . . , xd) w.r.t. the marked points xij = xi + λi j (xj − xi) on its edges.

Proof. After transposing and expanding the determinant on the left-hand side of (4) along
the first row we recognize that �0(x∗) = 0 is equivalent to

‖x∗‖2 � −
d∑

j=1

x∗
j

∣∣∣∣∣∣∣∣∣

x11 · · · λ01‖x1‖2 · · · xd1

x12 · · · λ02‖x2‖2 · · · xd2
...

...
...

x1d · · · λ0d‖xd‖2 · · · xdd

∣∣∣∣∣∣∣∣∣
= 0 . (10)
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Miquel point M =

x3 = (1 1 6, , )

x0 = (0 0 0, , )

x1 = (5 0 0, , )

x2 = (3 6 0, , )

(3.41 0.89 1.54, , )

Fig. 1: Tetrahedron S(x0, x1, x2, x3) and the four Miquel spheres with common Miquel
point M for λ01 = 1/2 , λ02 = 1/4 , λ03 = 2/3 , λ12 = 1/3 , λ13 =
1/4 , λ23 = 2/3

Dividing by � 
= 0 the latter equation takes the form 〈x∗, x∗ − z0〉 = 0, where the
components of z0 = (z1, . . . , zd )′ are given by

z j = 1

�

∣∣∣∣∣∣∣∣∣

x11 · · · λ01‖x1‖2 · · · xd1

x12 · · · λ02‖x2‖2 · · · xd2
...

...
...

x1d · · · λ0d‖xd‖2 · · · xdd

∣∣∣∣∣∣∣∣∣
for j = 1, . . . , d .

Applying Cramer’s rule we see that z0 satisfies the linear equation X′ z0 = xλ, i.e.
〈xi/‖xi‖, z0〉 = λ0i ‖xi‖ for i = 1, . . . , d , so that z0 = (X′)−1 xλ. The geometric in-
terpretation of the above relations reveals that the orthogonal projection of z0 onto the
edge joining o and xi equals x0i = λ0i xi for i = 1, . . . , d . Furthermore, z0 lies on the
sphere S0 and, provided that x∗ ∈ S0, the point z0/2 coincides with the centre of S0 by
appealing to the converse of Thales’ theorem.

Hence, �0(x∗) = 0 holds if and only if

〈x∗, x∗ − (X′)−1 xλ〉 = x′
λ (A−1

� )′ X′ (
X A−1

� − (X′)−1
)

xλ = x′
λ C� xλ = 0 ,

where C� := (A−1
� )′ X′ X A−1

� − (A−1
� )′.
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Fig. 2: Intersection of the tetrahedron and the Miquel spheres in Fig. 1 with the
plane z = 1.54 parallel to the xy-plane

Using (7) we find that

C� = 1

2
(A−1

� )′
(

A� + A′
�

)
A−1

� − (A−1
� )′ = 1

2

(
A−1

� − (A−1
� )′

)
= −C′

� ,

thus proving the skew-symmetry of the matrix C� which is necessary and sufficient for the
quadratic form x′

λ C� xλ to disappear for any real λ01, . . . , λ0d and any x1, . . . , xd ∈ R
d ,

as we wished to prove.

It remains to show that �i (x∗) = 0 for i = 1, . . . , d . For this we transpose the determinant
on the left-hand side of (5) and expand it along the first row leading to the system of
equations

(‖x∗‖2 + λ0i‖xi‖2) � −
d∑

j=1

x∗
j

∣∣∣∣∣∣∣

x11 · · · ci1 · · · xd1
...

...
...

x1d · · · cid · · · xdd

∣∣∣∣∣∣∣
= 0 , i = 1, . . . , d .

︸︷︷︸
j-th column

In the next step we subtract equation (9) from the latter equation and divide the difference
by � 
= 0. Finally, using the abbreviation (6) we arrive at the equation

λ0i‖xi‖2 =
d∑

j=1

x∗
j wi j with wi j = 1

�

∣∣∣∣∣∣∣

x11 · · · ai1 · · · xd1
...

...
...

x1d · · · aid · · · xdd

∣∣∣∣∣∣∣
, j = 1, . . . , d ,

︸︷︷︸
j-th column
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which is equivalent to �i (x∗) = 0 for each i = 1, . . . , d . Again, according to Cramer’s
rule the vector wi = (wi1, . . . , wid )′ satisfies the equation X′ wi = (ai1, . . . , aid )′, that is,
we may write wi = (X′)−1 A′

� ei with ei = (0, . . . , 1, . . . , 0)′ denoting the i -th column
vector of the d × d identity matrix. Hence, the above equations can be rewritten as

λ0i‖xi‖2 = wi
′ x∗ = ei

′ A� X−1 x∗ for i = 1, . . . , d .

However, these equations follow directly from (8) and vice versa. Thus the proof of the
Theorem is complete. �

Note that the point zi = wi+z0−xi which can be shown to belong to the sphere Si satisfies
the orthogonality relation

〈x∗ − zi, x∗ − xi〉 = 0 for i = 1, . . . , d .

This is easily verified by straightforward computations using the expressions of x∗, wi,
and z0 given in the above proof. As a result, the sphere Si has the centre (zi + xi)/2 =
(wi + z0)/2.

3 Bounds for determinants

In the subsequent lemma we establish a lower bound for the determinant of A� that is
uniform in all the varying parameters λi j , 0 ≤ i < j ≤ d , and even positive provided the
vectors x1, . . . , xd are linearly independent. Note that the below inequality (11) is valid
for any d (≥ 2) elements of an arbitrary Euclidean vector space.

Lemma. Let V be a Euclidean vector space equipped with scalar product 〈·, ·〉. For any
x1, . . . , xd ∈ V and any real numbers λi j , i, j = 0, 1, . . . , d, satisfying λi j + λ j i = 1 for
i, j = 0, 1, . . . , d, the inequality

det A� ≥ det B� + det G(X) ≥ det G(X) (11)

holds, where A�, B�, and G(X) are defined by (6), (9), and (7), respectively.

Equality is attained in (11) if

λi j ‖xi − xj‖2 = (1 − λ0i ) ‖xi‖2 + λ0 j ‖xj‖2 − 〈xi, xj〉 for 1 ≤ i < j ≤ d .

Proof. As already pointed out at the end of Section 1 the determinant of any skew-
symmetric d×d matrix B is non-negative and equals zero if d is odd. Thus, the second part
of (11) is trivial and instead of the first part we prove the slightly more general inequality

det(B + G(X)) ≥ det B + det G(X) . (12)

By applying the well-known principal axis theorem to the non-negative definite Gram
matrix G(X) we find an orthogonal d × d matrix O (with det O = 1) such that D =
O′ G(X) O is a diagonal matrix with non-negative diagonal elements. The multiplication
rule for determinants enables us to replace G(X) by D and B by the skew-symmetric matrix
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O′ B O without changing the inequality (12). Therefore it suffices to verify det(B + D) ≥
det B+det D only for diagonal matrices D with non-negative diagonal elements y1, . . . , yd

and any skew-symmetric d × d matrix B. The Taylor expansion of the function

f (y1, . . . , yd) = det(B + D) =

∣∣∣∣∣∣∣∣∣

y1 b12 · · · b1d

−b12 y2 · · · b2d
...

...
...

−b1d −b2d · · · yd

∣∣∣∣∣∣∣∣∣

leads to

f (y1, . . . , yd) = det B +
d−2∑
k=1

∑
1≤i1<···<ik ≤d

yi1 · · · yik det Bi1,...,ik + y1 · · · yd ,

where the (d − k)× (d − k) matrix Bi1,...,ik emerges from B by deleting the rows i1, . . . , ik

and columns i1, . . . , ik . Obviously, all these matrices are skew-symmetric which, together
with y1, . . . , yd ≥ 0, implies

f (y1, . . . , yd) ≥ det B + y1 · · · yd = det B + det D .

Thus the inequality (11) is proved. The proof of the lemma is complete by noting that
A� = A′

� and (7) imply equality in (11). �

Remark. The above proof turns out that the inequality (12) remains valid if G(X) is
replaced by any other non-negative definite d × d matrix.

Corollary. If x1, . . . , xd ∈ V are linearly independent, then det A� is positive which in
turn implies the existence of the inverse A−1

� for all real λi j satisfying λi j + λ j i = 1 for
i, j = 0, 1, . . . , d. As a special case, (11) includes the well-known Hadamard inequality

det G(X) ≤ ‖x1‖2 · . . . · ‖xd‖2 for any x1, . . . , xd ∈ V ,

which reads | � | ≤ ‖x1‖ · . . . · ‖xd‖ in R
d .

The first part of the corollary follows from the well-known fact that det G(X) > 0 char-
acterizes the linear independence of x1, . . . , xd ∈ V . The second part follows by setting
λ01 = . . . = λ0d = 0 and λi j = ‖xi‖2/‖xi−xj‖2 so that by (6) a j i = 0 for 1 ≤ i < j ≤ d .
In other words, A� is an upper triangular matrix entailing det A� = a11 · . . . · add .

4 Concluding remarks

1. Formula (8) and the above theorem reveal that the Miquel point M of the simplex
S(o, x1, . . . , xd) w.r.t. the marked points xij = xi +λi j (xj − xi) on the simplex’ edges can
be represented as a linear combination of the edges x1, . . . , xd,

x∗ =
d∑

i=1

ui xi = X u with weight vector u = (u1, ..., ud)′ = A−1
� xλ . (13)
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From (6) and (8) it is seen that the weights u1, . . . , ud depend only on the parameters
λi j and the squared edge lengths ‖xi − xj‖2 for 0 ≤ i < j ≤ d (with x0 = o ). For
this reason the Miquel point can be defined in a meaningful way for any finite family of
linearly independent elements of a Euclidean vector space V .

By (13) the Miquel points x∗
i , i = 0, 1, . . . , d , of those (d − 1)-simplices having the

d vertices xj , j 
= i , can be easily determined. Geometrically spoken, x∗
i is the point

of intersection of the d Miquel spheres Sj , j 
= i , with the hyperplane containing the
(d − 1)-face of the original simplex which xi does not belong to. In this way a new d-
simplex S(x∗

0, x∗
1, . . . , x∗

d) arises and relations between it and the original one for given
λi j ’s could be of interest.

2. Since the matrix A� is invertible for any λi j the point x∗ is also well-defined for λi j ∈
{0, 1}. For special choices of the λi j ’s we have interesting geometric intepretations, e.g.
for d = 2, letting λ01 → 1, λ02 → 0, and λ12 → 1 entails that each of the limiting Miquel
circles touches one side of the triangle � x0x1x2 at a vertex and passes through the opposite
vertex; the corresponding Miquel point turns into the Brocard point, see [1]. By means
of the Theorem in Section 2 several generalizations of this point to higher dimensions are
possible. In particular, for a tetrahedron S(o, x1, x2, x3) in R

3 the choice λ01 = λ02 =
λ03 = λ13 = 1 and λ12 = λ23 = 0 (in the above setting) yields x∗ as common point of the
circumsphere S0 and S1 ∩ S2 ∩ S3, where e.g. S1 is the unique sphere through x3 touching
the face triangle � ox1x2 at x1, and S2, S3 are defined analogously.

3. The vertices of a further d-simplex associated with S(o, x1, . . . , xd) and the given λi j ’s
coincide with the midpoints xc

i of the Miquel spheres Si , i = 0, 1, . . . , d . In Section 2 we
have derived the following formulas:

xc
0 = 1

2
(X′)−1 xλ and xc

i = 1

2
(X′)−1 A� ei + xc

0 , i = 1, . . . , d .

In the planar case simple geometric arguments show that the triangles � x0x1x2 and
� xc

0xc
1xc

2 are similar, cf. e.g. [1]. It is natural to ask whether the simplex S(xc
0, xc

1, . . . , xc
d)

and the original simplex are similar for any d ≥ 2. This fact can be expressed analytically
by an orthogonal matrix O and some scaling factor γ > 0 by requiring

xc
i − xc

0 = 1

2
(X′)−1 A� ei = γ O xi for i = 1, . . . , d , where γ = 1

2

(det A�

�2

)1/d
.

In view of O′ = O−1 and (7) these relations are equivalent to G−1(X) = 2 γ 2
(

A−1
� +

(A′
�)−1

)
. This equality holds actually only for d = 2 without additional restrictions on

the λi j ’s.

4. On the other hand, for any d ≥ 2 , the particular choice λi j = 1/2, 0 ≤ i < j ≤ d ,
yields the Miquel point x∗ = 1

2 (X′)−1 (‖x1‖2, . . . , ‖xd‖2)′, which coincides with the
circumcentre of the simplex S(o, x1, . . . , xd).
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