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1 Introduction

Originally Catalan numbers were revealed for the first time in a letter from Euler to Gold-
bach in 1751 when counting the number of triangulations of a convex polygon (for a brief
history see [6]). Today they are usually defined by Cn = 1

n+1

(2n
n

)
and can be characterized

recursively by

Cn = 2(2n − 1)

n + 1
Cn−1 or Cn = Cn−1C0 + Cn−2C1 + . . . + C1Cn−2 + C0Cn−1,

.

In dem nachfolgenden Beitrag führen uns die beiden Autoren in interessante Zusam-
menhänge zwischen Primzahlen bzw. Primzahlzwillingen und Catalanschen Zahlen
ein. Dazu erinnern wir daran, dass die n-te Catalansche Zahl durch Cn = 1

n+1

(2n
n

)

gegeben ist. Bekanntlich gilt nun für eine ungerade Primzahl p nach dem kleinen Fer-
matschen Satz 2p ≡ 2 mod p. Hiervon gilt allerdings nicht die Umkehrung; des-
halb wird eine natürliche Zahl n, welche 2n ≡ 2 mod n erfüllt, Pseudoprimzahl
genannt. Der Zusammenhang zwischen Catalanschen Zahlen und Primzahlen besteht
in dem offenbar wenig bekannten Ergebnis, dass für eine Primzahl p die Beziehung
(−1)(p−1)/2C(p−1)/2 ≡ 2 mod p gilt. Wiederum ist die Umkehrung hiervon im All-
gemeinen nicht richtig, und man wird entsprechend zum Begriff der Catalanschen
Pseudoprimzahl geführt. In Analogie zu den beiden genannten Kriterien stellen die
Autoren schliesslich zwei notwendige, aber nicht hinreichende Kriterien für Primzahl-
zwillinge vor.
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with C0 = 1. Their appearances occur in a dazzling variety of combinatorial settings
where they are used to enumerate various kinds of geometric and algebraic objects (see
Richard Stanley’s collection [29, Chap. 6]; an online Addendum is continuously updated).
Quite a lot is known about the divisibility of the Catalan numbers; see [2, 10]. They are
obviously closely related to the middle binomial numbers and not surprisingly, there is a
considerable literature on their divisibility too; see [13, 5, 19, 15, 17, 16].

The aim of this paper is to observe a connection between Catalan numbers, primes and
twin primes.

2 Primes
“There are few better known or more easily understood problems in pure mathematics
than the question of rapidly determining whether a given integer is prime” [18]. A classic
primality criterion is Wilson’s theorem, which says (see [24, Ch. 11]):

Wilson’s theorem. A natural number p is prime if and only if (p − 1)! ≡ −1 (mod p).

Wilson’s theorem is a very striking result, and yet it is quite impractical as a primality
check. “The trouble with Wilson’s theorem is that it is more beautiful than useful” [26].
In some texts, it is used to prove Fermat’s little theorem, a particular case of which is:

Theorem 1. If p is prime, then 2p ≡ 2 (mod p).

A fascinating account of the history of proofs of Wilson’s and Fermat’s theorems is given
in [11, Chap. 3]. Although Theorem 1 is a useful basic primality test, its converse is
false; for example, 2341 ≡ 2 (mod 341), but 341 is not prime; such numbers are called
pseudoprimes. Some other pseudoprimes are: 561, 645, 1105, 1387, and 1729, just to
stop on a famous number.

In a similar vein, we have:

Theorem 2. If p is an odd prime, then (−1)
p−1

2 · C p−1
2

≡ 2 (mod p).

It seems surprising that the above connection does not seem to have been previously ex-
plicitly observed, especially since Catalan numbers are the subject of such interest (some-
times known as Catalan disease) and there have been so many proofs of Wilson’s theorem,
including proofs by Catalan himself [11, Chap. 3]. We give two proofs of Theorem 2.

Proof 1 of Theorem 2. Suppose that p is an odd prime. Modulo p, one has p − i ≡ −i ,

for all i . Hence (p − 1)! ≡ (−1)
p−1

2

((
p−1

2

)
!
)2

and so

C p−1
2

= 1
p+1

2

(
p − 1

p−1
2

)
= 2

p + 1

(p − 1)!
((

p−1
2

)
!
)2

≡ 2(−1)
p−1

2

p + 1
≡ 2(−1)

p−1
2 .

�

Before giving the next proof, first recall the following elementary facts (part (a) was ob-
served by Leibniz [11, p. 59], part (b) was observed as early as 1830 [11, p. 67] and appears
for example in [1, Ex. 3.3.15]):
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Lemma 1. If p is prime and 0 < i < p, then we have:

(a)
(p

i

) ≡ 0 (mod p),

(b) (−1)i
(p−1

i

) ≡ 1 (mod p),

(c) (−1)i+1 · 1
p · (p

i

) ≡ 1
i (mod p), where 1

i denotes the multiplicative inverse of i
modulo p.

Proof . Part (a) is obvious, but that will not stop us giving a proof in Section 4.

(b) The binomial theorem gives
(p−1

i

) = (p
i

) − (p−1
i−1

)
. It follows that

(
p − 1

i

)
=

(
p

i

)
−

(
p

i − 1

)
+

(
p

i − 2

)
− . . . + (−1)i ≡ (−1)i ,

using (a). Part (c) follows from (b) since i
p

(p
i

) = (p−1
i−1

)
. �

Proof 2 of Theorem 2. By Lemma 1(b), we have

(−1)
p−1

2 · C p−1
2

= (−1)
p−1

2 · 2

p + 1

(
p − 1

p−1
2

)
≡ 2.

�

Notice that the above proofs are completely elementary; they do not even use Wilson’s the-
orem. Like Theorem 1, Theorem 2 gives a necessary condition for p to be prime, and like
Theorem 1, its converse is false; for example, C2953 ≡ −2 (mod 5907), but 5907 is not
prime (being equal to 3·11·179). We will call such numbers Catalan pseudoprimes. Com-
paring Theorems 1 and 2, notice that although the computation of the Catalan numbers is
quite involved [7], C p−1

2
is considerably smaller than 2p. Moreover, Catalan pseudoprimes

seem to be far less common than standard pseudoprimes. Indeed, searching for Catalan
pseudoprimes with a computer can be quite discouraging. A more theoretical approach
consists in trying to identify Catalan pseudoprimes of a given form, the simplest of all be-
ing p2, where p is prime. In that case the natural question arises as to whether they would
also be standard pseudoprimes. The affirmative answer here below is even more precise.

Proposition 1. If p is an odd prime, then the following numbers are equal modulo p2:

(a) 1
2 · C p2−1

2

, (b) (−1)
p−1

2
(p−1

p−1
2

)
, (c) 2p − 1, (d) 2p2 − 1,

(e) 1 + 2 p
(
1 + 1

3 + 1
5 + · · · + 1

p−2

)
, where 1

i denotes the inverse of i modulo p.

Proof . First note that if 1 ≤ i < p2 and i is not a multiple of p, then i has an inverse

modulo p2, and p2−i
i ≡ −1. Thus

1

2
· C p2−1

2

= 1

p2 + 1

(
p2 − 1

p2−1
2

)
≡

(
p2 − 1

p2−1
2

)
= p2 − 1

1
· p2 − 2

2
· p2 − 3

3
. . .

p2+1
2

p2−1
2
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≡ (−1)
p2−p

2 · p2 − p

p
· p2 − 2 p

2 p
· p2 − 3 p

3 p
. . .

p2 − p−1
2 p

p−1
2 p

= (−1)
p2−p

2 · p − 1

1
· p − 2

2
· p − 3

3
. . .

p+1
2

p−1
2

= (−1)
p2−p

2 ·
(

p − 1
p−1

2

)
= (−1)

p−1
2 ·

(
p − 1

p−1
2

)
.

So (a) = (b). The claim (b) = (e) can be deduced directly from [20, Theorem 133]. We
supply a proof for completeness. We have

(−1)
p−1

2 ·
(

p − 1
p−1

2

)
= (−1)

p−1
2 · p − 1

1
· p − 2

2
· p − 3

3
. . .

p − p−1
2

p−1
2

= 1 − p

1
· 2 − p

2
· 3 − p

3
· · ·

p−1
2 − p

p−1
2

.

So, expanding in powers of p,

(−1)
p−1

2 ·
(

p − 1
p−1

2

)
≡ 1 − p

(1

1
+ 1

2
+ 1

3
+ . . . + 1

p−1
2

)

≡ 1 − 2 p
(1

2
+ 1

4
+ 1

6
+ . . . + 1

p − 1

)
(mod p2).

Modulo p, each inverse 1
i equals a unique number j with 1 ≤ j < p. Thus one has the

following fact observed by Cauchy [11, Chap. III]:

1

1
+ 1

2
+ 1

3
+ . . . + 1

p − 1
= 1 + 2 + 3 + . . . + (p − 1) = p

p − 1

2
≡ 0 (mod p). (1)

Hence

(−1)
p−1

2 ·
(

p − 1
p−1

2

)
≡ 1 + 2 p

(
1 + 1

3
+ 1

5
+ . . . + 1

p − 2

)
(mod p2).

Thus (b) = (e). The equation (e) = (c) was apparently proved by Sylvester [28,
Chap. 8A]; it follows from [20, Theorem 132], but once again we supply a proof for
completeness. Using Lemma 1(c) and (1), we have modulo p2,

2p = (1 + 1)p =
p∑

j=0

(
p

j

)

≡ 2 + p
[(1

1
+ 1

3
+ 1

5
+ . . . + 1

p − 2

)
−

(1

2
+ 1

4
+ 1

6
+ . . . + 1

p − 1

)]

≡ 2 + 2 p
(1

1
+ 1

3
+ 1

5
+ . . . + 1

p − 2

)
(mod p2).



Catalan numbers, primes, and twin primes 157

This gives (e) = (c). Finally, by Theorem 1, 2p ≡ 2 (mod p), so modulo p2, we have
2p = 2 + x p, for some x ∈ {0, 1, . . . , p − 1}. Thus

2p2 = (2p)p = (2 + x p)p ≡ 2p (mod p2).

Hence (c) = (d). �

Recall that if p is prime and 2p ≡ 2 modulo p2, then p is a Wieferich prime. 1093
and 3511 are the only known Wieferich primes; there are no other Wieferich primes less
than 1.25 × 1015 [21], but at present it is not known whether there are only finitely many
Wieferich primes. Wieferich showed in 1909 that if the Fermat equation x p + y p = z p

had a solution for an odd prime p not dividing xyz, then the smallest such p is necessarily
a Wieferich prime [27]. Notice that the above proposition has the following corollary:

Corollary 1. If p is prime, then the following are equivalent:

(a) p is a Wieferich prime,

(b) p2 is a pseudoprime,

(c) p2 is a Catalan pseudoprime.

So 1194649 = 10932 and 12327121 = 35112 are examples of Catalan pseudoprimes.
Much rarer than standard pseudoprimes, 5907, 10932 and 35112 are the only Catalan pseu-
doprimes we are currently aware of.

Remark 1. Notice that by Theorems 1 and 2, when p is prime, (−1)
p−1

2 · C p−1
2

≡ 2p

(mod p). Proposition 1 gives a stronger version of this. Indeed, from Proposition 1 we
obtain

(−1)
p−1

2 ·C p−1
2

=(−1)
p−1

2
2

p +1

(
p −1
p−1

2

)
≡ 2

p +1
(2p −1)≡2(1− p)(2p −1) (mod p2).

We remark in passing that an even stronger statement can be deduced from a result of
Frank Morley [23]: if p > 3 is prime, then

(−1)
p−1

2 · C p−1
2

≡ (1 − p + p2)22p−1 (mod p3).

For related information, see [14, Lecture 2].

Remark 2. As we saw above, Theorem 2 is a trivial consequence of Lemma 1. Although
the converse of Theorem 2 is false, the converse of Lemma 1 is true, as was observed by
Leibniz [11, p. 91]: a natural number p is prime if and only if

(p
i

)
is divisible by p for all

0 < i < p. Indeed, if n is composite, and q is a prime divisor of n, then
(n

q

)
is not divisible

by n, as one can see by writing

1

n

(
n

q

)
= (n − 1)(n − 2) . . . (n − q + 1)

q!
and noting that since q divides n, q does not divide any of the terms in the numerator.
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3 Twin primes

There is a twin prime version of Wilson’s theorem, known as Clement’s theorem [8], that
says:

Clement’s theorem. The natural numbers p, p + 2 are both prime if and only if

4(p − 1)! + p + 4 ≡ 0 (mod p(p + 2)).

Clement’s theorem has been rediscovered and generalized by a number of people [25,
4]. In fact, it was discovered by Zahlen a few years before Clement [30]. An alternate
expression is given in [9]. There is an obvious “Fermat” version of Clement’s theorem,
which we have not noticed in the literature:

Theorem 3. If the natural numbers p, p + 2 are both prime, then 2p+2 ≡ 3 p + 8
(mod p(p + 2)).

Proof . Suppose that p, p + 2 are both prime. We are required to show that 2p+2 ≡ 3 p + 8
(mod p) and 2p+2 ≡ 3 p + 8 (mod p + 2). Modulo p, Theorem 1 gives

2p+2 ≡ 8 ≡ 3 p + 8 (mod p),

while modulo p + 2, Theorem 1 gives

2p+2 ≡ 2 ≡ 3(p + 2) + 2 = 3 p + 8 (mod p + 2),

as required. �

The converse to Theorem 3 is false. For example, for p = 561, one has 2p+2 ≡ 3 p + 8
(mod p(p + 2)), but while 561 is prime, 563 is a pseudoprime. Another example is
p = 4369, where p and p + 2 are both pseudoprimes.

Nevertheless, in the same way that Fermat’s little theorem has a generalization of the form:
“p is prime if and only if for every prime q < p, q p−1 ≡ 1 (mod p)”, Theorem 3 can
also be generalized to:

Theorem 4. The natural numbers p and p +2 are both prime, if and only if for all primes
q < p, 2q p+1 ≡ p(q2 − 1) + 2q2 (mod p(p + 2)).

Theorem 4 can be established in the same way we proved Theorem 3, with the help of
little Fermat’s extension.

Returning to Catalan numbers, there is a recent twin-prime criterion that is not entirely
unrelated to the Catalan numbers [12]. In a different direction, the following observation
is directly analogous to Clement’s theorem and Theorem 3:

Theorem 5. If the natural numbers p, p + 2 are both prime, then

8(−1)
p−1

2 C p−1
2

≡ 7 p + 16 (mod p(p + 2)).
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Proof . Suppose that p, p + 2 are both prime. Modulo p, Theorem 2 gives

8(−1)
p−1

2 C p−1
2

≡ 8 · 2 ≡ 7 p + 16 ≡ 0 (mod p).

One has C p−1
2

= p+3
4p C p+1

2
. So, modulo p + 2, Theorem 2 gives

8(−1)
p−1

2 C p−1
2

= − p + 3

p
2(−1)

p+1
2 C p+1

2
≡ −4

p + 3

p
≡ 2 ≡ 7 p +16 (mod p +2),

which completes the proof. �

We do not have a counter-example to the converse of Theorem 5; the only Catalan pseu-
doprimes we currently know are 5907, 1194649 and 12327121, and none of the numbers
5907 ± 2, 1194649 ± 2, 12327121 ± 2 is prime.

Remark 3. Using Lemma 1 and Remark 2, it is not difficult to establish the following:
the natural numbers p, p + 2 are both prime if and only if

(−1)i+1
(

p

i

)
≡ i + 1

2
p (mod p(p + 2)), for all 0 < i < p.

4 A door ajar?
The connection between primes and Catalan numbers opens the door (however narrowly)
to possible connections between primes and various combinatorial problems. There are
precedents for this sort of thing. There is a geometric proof of Fermat’s little theorem; see
[3, Ch. 3.2]. Here is one way of seeing it. Consider the possible black-white colourings of
the vertices of a regular p-gon. There are 2p such colourings. The cyclic group Zp acts
by rotation on the polygon and hence on the set of colourings. There are two colourings
fixed by this action (all black and all white), and for p prime, the Zp-action is free on the
set of the 2p − 2 other colourings. Thus 2p − 2 ≡ 0 (mod p), which proves Theorem 1.

There are other elementary results that can be established in a similar manner. For exam-
ple, there are

(p
i

)
colourings of the above kind in which exactly i vertices are coloured

black. For p prime and 0 < i < p, the Zp-action on these colourings is obviously free, so(p
i

) ≡ 0 (mod p), which proves Lemma 1(a).

Lemma 1(a) is admittedly trivial, being immediate from the definition
(p

i

) = p!
(p−i)!i! .

However, the same idea can be used to give a more interesting result. Consider the regular
mp-gon, where m ∈ N. The vertices can be grouped into p lots of m consecutive vertices,
which one can regard as forming the sides of a p-gon. Now consider the possible black-
white colourings of i vertices of the mp-gon. The action of Zp is once again free outside
the fixed points. The colourings that are fixed by the action are just those colourings that
are identical on each edge of the p-gon. So one has immediately:

Proposition 2. If p is prime, then for all m ∈ N

(a)
(pm

i

) ≡ 0 (mod p) if i �≡ 0 (mod p),

(b)
(pm

pi

) ≡ (m
i

)
(mod p) for all i ∈ N.
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From Proposition 2 we can quickly deduce Lucas’ theorem [22, Section XXI]:

Lucas’ theorem. If p is prime and 0 ≤ n, j < p, then
(pm+n

pi+ j

) ≡ (m
i

)(n
j

)
(mod p).

Proof . By Proposition 2(a) we can assume that n > 0. Then for the case j = 0,
(

pm + n

pi

)
= pm + n

p(m − i) + n

(
pm + n − 1

pi

)
≡

(
pm + n − 1

pi

)
(mod p),

and the result follows by induction on n. For j �= 0,
(

pm + n

pi + j

)
= pm + n

pi + j

(
pm + n − 1

pi + j − 1

)
≡ n

j

(
pm + n − 1

pi + j − 1

)
(mod p),

and again the required is obtained by induction on n. �

5 Back to the middle binomial coefficient
For convenience, let us introduce the following notation:

γn := (−1)
n−1

2

(
n − 1

n−1
2

)
,

for odd n. Theorem 2 can be rephrased as follows: if p is an odd prime, then γp ≡ 1
(mod p). The equation (a) = (b) of Proposition 1 can be rewritten as follows: if p is an
odd prime, then γp2 ≡ γp (mod p2). One also has:

Lemma 2.

(a) If p is an odd prime, then γmp ≡ γm (mod p) for all odd m ∈ N.

(b) If p, q are distinct odd primes, then γpq ≡ γpγq ≡ γp + γq − 1 (mod pq).

(c) If p is an odd prime, then for all odd n ≤ p, γn �≡ 0 and γn ≡ 22(n−1)γp−n+1
(mod p).

Proof . (a) Arguing as in the proof of Lemma 1(b), one has for all i

(−1)i
(

mp − 1

i

)
= 1 −

(
mp

1

)
+

(
mp

2

)
− . . . + (−1)i

(
mp

i

)

and so by Proposition 2,

(−1)i
(

mp − 1

i

)
≡ 1 −

(
m

1

)
+

(
m

2

)
− . . . + (−1) j

(
m

j

)
(mod p)

where j =
⌊

i
p

⌋
. For i = mp−1

2 one has
⌊

i
p

⌋
=

⌊
mp−1

2p

⌋
= m−1

2 . So

(−1)i
(

mp − 1
mp−1

2

)
≡ 1 −

(
m

1

)
+

(
m

2

)
− . . . + (−1)

m−1
2

(
m

m−1
2

)
= (−1)

m−1
2

(
m − 1

m−1
2

)
.

That is, γmp ≡ γm (mod p).
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(b) Suppose that p, q are distinct odd primes. From part (a), γpq ≡ γq (mod p). So,
as γp ≡ 1 (mod p), we have γpq ≡ γpγq (mod p). Similarly, γpq ≡ γpγq (mod q).
Thus γpq ≡ γpγq (mod pq). Furthermore, since γp − 1 ≡ 0 (mod p) and γq − 1 ≡ 0
(mod q), one has (γp −1)(γq −1) ≡ 0 (mod pq), and so γpγq ≡ γp +γq −1 (mod pq),
as required.

(c) First notice that for all odd i > 1

(−1)
i−1

2 γi =
(

i − 1
i−1

2

)
= 4

i − 2

i − 1

(
i − 3

i−3
2

)
= 4

i − 2

i − 1
(−1)

i−3
2 γi−2.

Hence

γi = −4
i − 2

i − 1
γi−2. (2)

Now we prove (c) by induction on n. For n = 1 it is obvious, so let n > 1. Using (2) first
and the induction hypotheses we obtain

γn ≡ −4
n − 2

n − 1
22(n−3)γp−n+3 (mod p)

= 4
n − 2

n − 1
22(n−3)4

p − n + 1

p − n + 2
γp−n+1 (using (2) again)

= n − 2

n − 1
· p − n + 1

p − n + 2
22(n−1)γp−n+1

≡ 22(n−1)γp−n+1 (mod p). �

Remark 4. It is not true that γpqr ≡ γpγqγr (mod pqr) for all distinct primes p, q , r .
For example, γ105 �≡ γ3γ5γ7 (mod 105).

Notice that from the definition, a composite number n is a Catalan pseudoprime if and
only if γn ≡ 1 (mod n). Further, one has:

Proposition 3. If p, q are distinct odd primes, then pq is a Catalan pseudoprime if and
only if γq ≡ 1 (mod p) and γp ≡ 1 (mod q).

Proof . If pq is a Catalan pseudoprime, then γpq ≡ 1 (mod pq). In particular, γpq ≡ 1
(mod p). So by Lemma 2(a), γpγq ≡ 1 (mod p). But as p is prime, γp ≡ 1 (mod p).
Hence γq ≡ 1 (mod p). By the same reasoning, γp ≡ 1 (mod q).

Conversely, if γp ≡ 1 (mod q) and γp ≡ 1 (mod q), then as p, q are distinct primes,
γp ≡ 1 (mod pq). Similarly, γq ≡ 1 (mod pq) and so by Lemma 2(b), γpq ≡ 1
(mod pq). �

The above considerations enable one to show that if p, q are prime with p < q and either
p or q − p is quite small, then pq is not a Catalan pseudoprime. To give a trivial example
of this, we prove:

Corollary 2. There are no Catalan pseudoprimes of the form p(p + 2), where p, p + 2
are twin primes.
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Proof . If p, p + 2 are primes, then by Lemma 2(c), γp ≡ 22(p−1)γ3 (mod p + 2). One
has γ3 = −2 and by Fermat’s little theorem, 22(p−1) ≡ 2−4 (mod p + 2). So γp ≡ −2−3

(mod p + 2). If p(p + 2) was a Catalan pseudoprime, then by Proposition 3 we would
have γp ≡ 1 (mod p + 2) and thus −2−3 ≡ 1 (mod p + 2), i.e., p + 2 = 9 contradicting
the assumption that p + 2 is prime. �

We now come to the main result of this paper, which enables one to reduce the calculation
of γn (mod p) to the case where n < p.

Theorem 6. If p is an odd prime, then for all odd n ∈ N,

γn ≡





0; �n/p� odd and n not a multiple of p,

γn/p; �n/p� odd and n a multiple of p,

γ�n/p�+1.γn−p�n/p�; �n/p� even.

(mod p)

Proof . If �n/p� is odd and n a multiple of p, then n has the form mp where m is odd, and
Lemma 2(a) gives the required result.

If �n/p� is odd and n is not a multiple of p, then n has the form mp + 2i where m is odd
and 0 < i < p/2. By induction,

γmp+2i = −4
mp + 2(i − 1)

mp + 2(i − 1) + 1
γmp+2(i−1) ≡ 0 (mod p).

and for i = 1, equation (2) gives:

γmp+2 = −4
mp

mp + 1
γmp ≡ 0 (mod p).

If �n/p� is even, then n has the form mp − 2i where m is odd and 0 < i < p/2. Applying
equation (2) i times gives:

γmp = (−4)i · mp − 2

mp − 1
· mp − 4

mp − 3
. . .

mp − 2i

mp − 2i + 1
γmp−2i

≡ (−1)i · 22i · 2

1
· 4

3
. . .

2i

2i − 1
γmp−2i (mod p).

Hence, since γmp ≡ γm (mod p) by Lemma 2(a), we have:

γmp−2i ≡ (−1)i · 2−2i 1

2
· 3

4
. . .

2i − 1

2i
γm (mod p). (3)

Notice that by definition

γ2i+1 = (−1)i
(

2i

i

)
= (−1)i (2i)!

(i !)2
= (−1)i 22i 1

2

3

4
. . .

2i − 1

2i
.

So, from equation (3), γmp−2i ≡ 2−4iγ2i+1γm (mod p). Thus, by Lemma 2(c), γmp−2i ≡
γp−2iγm (mod p). That is, γn ≡ γ�n/p�+1 · γn−p�n/p� (mod p), as required. �
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Remark 5. Theorem 6 can be alternatively deduced from Lucas’ theorem. We mention
also that the blocks of zeros where �q/p� is odd and q is not a multiple of p, has also been
observed for the Catalan numbers [2].

Using Theorem 6 and Proposition 3, our calculations show that there are no Catalan pseu-
doprimes less than 1010 of the form pq , where p, q are distinct primes.

Notice that Theorem 6(a) gives a considerable extension of Corollary 2. Indeed, if p, q
are prime and p < q < 2 p, then by Theorem 6, γq ≡ 0 (mod p) and so pq is not a
Catalan pseudoprime, by Proposition 3. The first possible case would therefore seem to be
the situation where q = 2 p + 1, but in fact there are no Catalan pseudoprimes of this form
either:

Corollary 3. There are no Catalan pseudoprimes of the form pq, where p, q = 2 p + 1 is
a Sophie Germain pair.

Proof . Otherwise for q = 2 p + 1, Theorem 6 gives γq ≡ γ3 · γ1 ≡ −2 (mod p). But
Proposition 3 implies γq ≡ 1 (mod p). Hence p = 3 and q = 7. Again by Proposition 3
we would have γp ≡ 1 (mod q), but γ3 = −2 �≡ 1 (mod 7). �
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Collège Calvin
CH–1211 Geneva, Switzerland
e-mail: christian.aebi@edu.ge.ch

Grant Cairns
Department of Mathematics
La Trobe University
Melbourne, Australia 3086
e-mail: G.Cairns@latrobe.edu.au


