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Let ABC be any triangle in the Euclidean plane E with side-lengths a, b, and c, and with
angles A, B , and C , in the standard order. Let X , Y , and Z be points on the sidelines BC ,
C A, and AB , respectively. A fairly well-known theorem of Ceva states that the cevians
AX , BY , and C Z are concurrent if and only if the cevian relation

(B X)(CY )(AZ) = −(C X)(AY )(B Z) (1)

holds, where U V denotes the directed distance between the points U and V . Here, a
cevian is a line that joins a vertex to a point on the opposite side. Less known is the fact
that the perpendiculars erected from the points X , Y , and Z on their respective sides, as

.

Fällt man von einem Punkt P aus die Lote auf die drei Seiten eines Dreiecks ABC ,
so bestimmen die Fusspunkte X , Y , Z auf diesen Seiten die entsprechenden Seitenab-
schnitte B X , CY , AZ . Es stellt sich heraus, dass der geometrische Ort aller Punkte P ,
für welche diese Seitenabschnitte sich als Linearformen der Längen a, b, c der Drei-
ecksseiten ausdrücken lassen, die Gerade durch die Zentren I und O des In- bzw. des
Umkreises ist. Dies ergänzt die Ergebnisse, dass die Gerade durch I und den Schwer-
punkt G des Dreiecks der geometrische Ort der Punkte ist, deren baryzentrische Ko-
ordinaten projektiv linear in a, b, c sind und dass die Eulergerade durch O und G der
geometrische Ort der Punkte ist, deren baryzentrische Koordinaten projektiv linear in
tan A, tan B , tan C sind. Ausserdem generieren die Autoren durch Untersuchung der
Geraden durch I, O und G zusätzliche spezielle Punkte des Dreiecks ABC , die im
Kimberling-Katalog der

”
Dreieckszentren“ nicht aufgeführt sind.
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shown in Fig. 1, are concurrent if and only if the condition

(B X)2 + (CY )2 + (AZ)2 = (C X)2 + (AY )2 + (B Z)2 (2)

holds; see, for example, [13] and [7, Theorem 6.3.1, p. 96].

Following [22], a center or a center function is defined to be a mapping that assigns to
every non-degenerate triangle in the Euclidean plane E a point in E in a manner that is
symmetric and that respects isometries and dilations. More precisely, a center function Z
satisfies the following properties:

(i) Z(σ (A), σ (B), σ (C)) = Z(A, B, C) for all permutations σ on {A, B, C}.
(ii) Z(ϕ(A), ϕ(B), ϕ(C)) = ϕ(Z(A, B, C)) for all isometries ϕ of E.

(iii) Z(λA, λB, λC) = λZ(A, B, C) for all real numbers λ.

A B

C

Z

X

Y

Fig. 1

Let P be a center of triangle ABC , and let X , Y , and Z be the orthogonal projections of P
on the sidelines BC , C A, and AB , respectively. If the lengths B X , CY , and AZ are linear
forms in a, b, and c, then it follows fairly easily from properties of center functions that
the directed lengths of the segments B X , etc., are given by

B X = a

2
+ t (b − c), CY = b

2
+ t (c − a), AZ = c

2
+ t (a − b) (3)

C X = a

2
− t (b − c), AY = b

2
− t (c − a), B Z = c

2
− t (a − b) (4)

for some t ∈ R; see the proof of [1, Theorem 1]. Plugging these values in (2), we obtain
what, unexpectedly, turns out to be an identity that holds for all t ; namely the identity

(a

2
+ t (b − c)

)2 +
(b

2
+ t (c − a)

)2 +
( c

2
+ t (a − b)

)2

=
(a

2
− t (b − c)

)2 +
(b

2
− t (c − a)

)2 +
( c

2
− t (a − b)

)2
.
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Thus every t ∈ R defines a center Pt in the manner described. Specifically, given t ∈ R,
we locate the points X , Y , and Z on the sidelines according to (3) and (4), and we let Pt be
the point of concurrence of the perpendiculars erected from these points on the respective
sidelines.

The centers Pt just defined were investigated in [3, Section 9]. There, the authors noted that
the centers corresponding to the values t = 0, t = −1/2 and t = 1/2 are the circumcenter,
the incenter, and what is referred to in [22] as the Bevan point, and they raised the following
question:

Question. What is the curve that the centers Pt trace as t varies?

In the theorem below, we answer this question and we prove that the curve in question is,
amazingly, a straight line. We also consider those centers for which the angles of XY Z
are linear forms in the angles of ABC .

Before stating and proving the main theorem, we remind the reader that the Gergonne
(respectively, Nagel) center of triangle ABC is the point of concurrence of the cevians
AA′, B B ′, and CC ′, where A′, B ′, C ′ are the points where the incircle (respectively, the
excircles) touch(es) the sides of ABC . That such cevians are concurrent follows from the
cevian condition (1). We also point out that the cevian analogue to the above question has
an extremely different answer. Specifically, it is shown in [1, Theorem 1] that the only
centers of ABC through which the cevians AA′, B B ′, CC ′ are such that B A′, C B ′, and
AC ′ are linear forms in a, b, and c are the centroid, the Gergonne center, and the Nagel
center. This heavy contrast stems from the fact that the cevian condition (1) takes the form

(a

2
+ t (b − c)

)(b

2
+ t (c − a)

)( c

2
+ t (a − b)

)

=
(a

2
− t (b − c)

)(b

2
− t (c − a)

)( c

2
− t (a − b)

)

and has three solutions only, namely t = −1/2, t = 0, and t = 1/2. Similarly, the only
centers for which ∠B AA′, ∠C B B ′, and ∠ACC ′ are linear forms in A, B , and C are the
circumcenter, the incenter, and the orthocenter, and the only centers for which ∠AC ′B ′,
∠B A′C ′, and ∠C B ′ A′ are linear in A, B , and C are the centroid, the orthocenter, and the
Nagel center; see [1, Theorem 2] and [2, Theorem 7]. Similar issues are addressed in [17]
and [4].

Theorem. Let ABC be a non-degenerate triangle with side-lengths a, b, and c in the
standard order. For a point P in the plane of ABC, let X, Y , and Z be the projections of
P on the sides BC, C A, and AB, respectively. Then the centers for which B X, CY , and
AZ are linear forms in a, b, and c form the straight line that joins the circumcenter and
the incenter.

Proof. As seen earlier, the centers in question are precisely the centers P = Pt whose
projections X = Xt , Y = Yt , and Z = Zt on the sides BC , C A, and AB satisfy (3) and
(4) for some t .
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Using the lengths of X B = Xt B and XC = Xt C as given in (3) and (4), we write Xt as a
convex combination

Xt = 1

a

[(a

2
+ t (b − c)

)
C +

(a

2
− t (b − c)

)
B

]

of the points B and C . Multiplying by 2a and simplifying, we obtain

2a Xt = a(C + B) + 2t (b − c)(C − B). (5)

Since Pt − Xt is perpendicular to C − B , it follows that Pt · (C − B) = Xt · (C − B). Here,
we have treated points in the plane as position vectors and we have used the ordinary scalar
product. Without loss in generality, we shall assume that the circumcenter P0 of ABC lies
at the origin O and that its circumradius is 1. Then

2a Pt · (C − B) = 2a Xt · (C − B)

= (a(C + B) + 2t (b − c)(C − B)) · (C − B), by (5)

= a(C · C − B · B) + 2t (b − c)(C − B) · (C − B)

= 2t (b − c)a2, because ‖C‖ = ‖B‖ = 1 and ‖C − B‖ = a.

From this and symmetry, we conclude that

Pt · (C − B) = ta(b − c), Pt · (A − C) = tb(c − a), Pt · (B − A) = tc(a − b). (6)

We shall now compute the distance ‖Pt − P0‖ = ‖Pt‖ between Pt and the circumcenter
P0 and see that it is a constant multiple of |t|.
To compute ‖Pt‖, we let D = [Pt C − B A − C] be the 2 × 3 matrix whose columns
represent the coordinates of the vectors Pt , C − B , and A −C (with respect to some basis),
and we consider the 3 × 3 matrix DT D, where DT denotes the transpose of D. Since
rank(D) ≤ 2 (in fact = 2, since C − B and A − C are linearly independent), it follows
from the general fact rank(U V ) ≤ rank(U ) that rank(DT D) ≤ 2 and that det(DT D) = 0.
Therefore

0 = det(DT D)

= det
([

Pt C − B A − C
]T [

Pt C − B A − C
])

= det




Pt · Pt Pt · (C − B) Pt · (A − C)

Pt · (C − B) (C − B) · (C − B) (C − B) · (A − C)

Pt · (A − C) (A − C) · (C − B) (A − C) · (A − C)




=
∣∣∣∣∣∣

Pt · Pt ta(b − c) tb(c − a)

ta(b − c) a2 Q
tb(c − a) Q b2

∣∣∣∣∣∣
, by (6) and where Q = (C − B) · (A − C)

= ‖Pt ‖2
∣∣∣∣

a2 Q
Q b2

∣∣∣∣ − ta(b − c)

∣∣∣∣
ta(b − c) Q
tb(c − a) b2

∣∣∣∣ + tb(c − a)

∣∣∣∣
ta(b − c) a2

tb(c − a) Q

∣∣∣∣

= ‖Pt ‖2
∣∣∣∣

a2 Q
Q b2

∣∣∣∣ − t2a(b − c)

∣∣∣∣
a(b − c) Q
b(c − a) b2

∣∣∣∣ + t2b(c − a)

∣∣∣∣
a(b − c) a2

b(c − a) Q

∣∣∣∣ .
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The right-hand side has the form ‖Pt‖2G − t2 H , where G and H do not depend on t .
Therefore ‖Pt‖2 = t2 F , where F does not depend on t , and hence the distance between
Pt and P0 = 0 is a constant multiple of |t|. Since the length of the projection of the
segment Pt P0 on BC is also a constant multiple of |t|, being nothing but |t||b − c|, we
conclude that the absolute value of the slope of Pt P0, relative to BC , is independent of t .
It follows that the slope of Pt P0 is independent of t . In fact, if b > c > a, then Xt moves
towards C and Yt towards A, showing that the slope is positive and hence does not change
sign. Thus Pt moves on a straight line, necessarily the line joining the circumcenter P0
and the incenter P−1/2. �

Remarks. (i) To find a formula for ‖Pt‖, one uses the Law of Cosines to obtain

2Q = 2(C − B) · (A − C) = −2ab cos C = c2 − a2 − b2,

and then plugs this in the determinant above. The result should of course be multiplied by
the circumradius R to make up for our assumption that R = 1. In view of Euler’s formula
d2 = R(R − 2r), where R is the circumradius, r the inradius, and d the distance between
the circumcenter and the incenter, one expects to get

‖Pt‖2 = 4t2‖P−1/2‖2 = 4t2d2 = 4t2 R(R − 2r).

(ii) Letting X , Y , and Z be as in the theorem, one may consider those centers for which
the angles of the pedal triangle XY Z are linear forms in A, B , and C . Since

∠Z XY = ∠Z X P + ∠Y X P = ∠Z B P + ∠Y C P = ∠B PC − A,

it follows that these are precisely the centers P for which the angles ∠B PC , ∠C P A, and
∠AP B are linear forms in A, B , and C . These centers are the subject of study in [17],
where the curve they trace is called the Balaton curve and where the complex behaviour
of this curve is fully described.

(iii) Let the centroid, the circumcenter, and the incenter of ABC be denoted, respectively,
by G, O, and I. It is shown in [4] that the locus of the centers of ABC whose barycentric
coordinates are projective linear functions in a, b, and c is the straight line L(G,I). It
is also noted there that the Euler line L(G,O) is the locus of the centers of ABC whose
barycentric coordinates are projective linear functions in tan A, tan B , and tan C . It follows
that

L(G,I) ‖ BC ⇐⇒ 2a = b + c, (7)

L(G,O) ‖ BC ⇐⇒ 2 tan A = tan B + tan C. (8)

A condition for L(O,I) to be parallel to BC can be found by setting the slope of L(O,I)

equal to 0. More directly, we let r and R be the inradius and circumradius of ABC , and
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we see that

L(O,I) ‖ BC ⇐⇒ the areas of triangles OBC and IBC are equal

⇐⇒ ra

2
= R2 sin 2A

2
⇐⇒ ra = 2R2 sin A cos A

⇐⇒ r

R
= cos A, because 2R = a

sin A
⇐⇒ cos A + cos B + cos C − 1 = cos A, by Carnot’s formula [24]

⇐⇒ cos B + cos C = 1.

Thus we have proved that

L(O,I) ‖ BC ⇐⇒ cos B + cos C = 1. (9)

For earlier references related to (7), see [20, Problem 82, p. 209], [8], [10], [14], [25], and
[12]. For (8), see [15, Problem 9, p. 18], [11], and [6], where [6] also describes the locus of
A when ABC is a triangle having a fixed base BC and satisfying 2 tan A = tan B + tan C .
For (9), see [26] and [19], where [19, Corollary 4] gives another geometric characterization
of the condition L(O,I) ‖ BC .

A B

C
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G

N

L(G,I)

Y

O

I

X

Z

L(O,I)L(G,O)

Fig. 2
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(iv) In [28, Exercise 5.7], the area of the triangle GOI is given by the elegant formula

[GOI] =
∣∣∣∣
s(b − c)(c − a)(a − b)

24K

∣∣∣∣ ,

where s is the semiperimeter and K the area of ABC . An equivalent formula is given in [5,
Section 4.4, pp. 105–106]. It follows that two (and hence all) of the three lines L(G,O),
L(G,I), and L(O,I) coincide if and only if ABC is isosceles. A more geometric proof
is given in [21, Section 11, problem 4, pp. 142–144]. Also, a generalization to higher
dimensional orthocentric simplices is given in [18].

(v) The lines L(G,O), L(G,I), and L(O,I), together with several centers that they
contain and the relative locations of these centers, are shown in Fig. 2. This figure shows
the similarity between the Euler line L(G,O) and its rival L(G,I) and locates them as two
medians of a triangle two of whose vertices are the orthocenter H and the Nagel center N .
The third vertex is labelledX and it does not seem to be a known center. This configuration
points to two more centers, other than X , that are denoted by Y (the midpoint of HN ) and
Z (the midpoint of OI). We wonder whether these centers as well as the many lines that
appear in this configuration are not already catalogued in [22].

(vi) According to [23], the line L(O,I) passes through 68 centers that include the Bevan
point X40 and the points X46, X56, X165, and X35. The trilinear equation of L(O,I) is

(cos B − cos C) α + (cos C − cos A) β + (cos A − cos B) γ = 0.

In view of the fact that (cos B − cos C, cos C − cos A, cos A − cos B) are trilinear
coordinates of X109, L(O,I) is the central line that should be denoted by L109. For more
on central lines, see [27].

In the two recent papers [16] and [19], the line L(O,I) is called the O I -line, and some of
its properties are explored. According to [16], the point X57 also lies on the O I -line. It is
also proved in [19, Lemma 2] that the orthocenter of the intouch triangle, or equivalently
the orthocenter of the cevian triangle of the Gergonne point, lies on the O I -line. One
wonders whether this center is already catalogued in [22] and [23].
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