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1 One dimension

The mean value theorem says that if f (x) has a derivative at every point x ∈ (a, b) and is
continuous at x = a and x = b, then there is a c ∈ (a, b) such that

f ′(c) = f (b) − f (a)

b − a
.

We investigate the truth of a finite difference variant of this result, namely whether, given
f continuous on [a, b] and given p ∈ (0, b − a), there is a c ∈ [a, b − p] such that

f (c + p) − f (c)

p
= f (b) − f (a)

b − a
.

.

Aus dem Analysisunterricht ist uns der Mittelwertsatz der Differentialrechnung wohl-
bekannt. In dem nachfolgenden Beitrag beweist der Autor ein Analogon für Differen-
zenquotienten. Dazu sei f eine stetige reellwertige Funktion auf dem abgeschlossenen
Intervall [a, b]. Weiter werde vorausgesetzt, dass p ∈ (0, b − a) ein echter Teiler von
b −a ist, d.h. dass es eine natürliche Zahl n > 1 mit b −a = n · p gibt. Dann garantiert
der Mittelwertsatz für Differenzenquotienten die Existenz eines c ∈ [a, b − p], so dass
die Gleichung

f (c + p) − f (c)

p
= f (b) − f (a)

b − a

besteht. Darüber hinaus gibt der Autor Gegenbeispiele zu diesem Satz, wenn p kein
Teiler von b − a ist.
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First, suppose p is a proper divisor of b − a, i.e., p = b−a
n for some integer n ≥ 2. Let

m = f (b)− f (a)
b−a and r(x) = f (x+p)− f (x)

p . Then

1

n

(
r(a) + r(a + p) + . . . + r(a + (n − 1)p)

) = f (b) − f (a)

np
= m. (1.1)

All r(a + i p) > m would force the left hand side to be > m, so some r(a + i p) ≤
m; similarly some r(a + j p) ≥ m. The intermediate value theorem assures us that the
continuous function r must take on the value m for some x between a + i p and a + j p.

Second, suppose that p is not a proper divisor of b − a so that b − a = np + ε for some
natural number n and some ε ∈ (0, p). Set g(x) = sin2 π x−a

p − x
b−a sin2 π b−a

p . Then
g(b)−g(a)

b−a = 0; but for every c ∈ [a, b − p], g(c+p)−g(c)
p = − 1

b−a sin2 π b−a
p < 0. We have

shown:

Theorem 1. Let f be a real-valued continuous function on a closed interval [a, b] and let
m = f (b)− f (a)

b−a . If p = (b − a)/n for some integer n ≥ 2, then there is a c ∈ [a, b − p]
so that f (c+p)− f (c)

p = m. However, if p ∈ (0, b − a)\ { b−a
2 , b−a

3 , . . .
}
, then there is an

infinitely differentiable function g = gp so that for every c ∈ [a, b − p], g(c+p)−g(c)
p �=

g(b)−g(a)
b−a .

Remark 1. The negative side of this result manifests itself in a couple of counterintuitive
facts. One is that it is possible for runner A to run a marathon at a perfectly steady 8 minute
per mile pace and for runner B to run that marathon so that every mile interval [x, x + 1],
0 ≤ x ≤ 25.2 is run in 8 minutes and 1 second but so that B beats A ([5, Problem
167]). The other is that it is possible for a runner to run 1609 meters at an average rate of
speed that exceeds his average rate of speed for every interval of the form [x, x + 1600],
0 ≤ x ≤ 9 ([1]). Comparing these two phenomena motivated this paper. We now know
that the connection between these facts is that 1 is not a proper divisor of 26.2 and 1600 is
not a proper divisor of 1609.

The point c in the statement of the mean value theorem is strictly interior to [a, b].
If b − a = np with the integer n ≥ 3 we can similarly find c so that [c, c + p] is
strictly interior to [a, b]. For the proof given above produces such a c except when
r(a) = m; while if r(a) = m, either all r(a + i p) = m whence c = a + p works, or
[r(a + i p) − m][r(a + j p) − m] < 0 for some i, j ≥ 1 whence a satisfactory c strictly
between a+i p and a+ j p can be found. However the n = 2 case is different: for example,
if n = 2, [a, b] = [0, 2π], and f (x) = sin x ; then [c, c+ p] = [c, c+π] cannot be chosen
to be strictly interior to [0, 2π].
When the original interval [a, b] is replaced by a circle’s circumference, the conclu-
sion becomes very different. Identify [a, b) with the circumference of a circle and say
that f is almost continuous if f is continuous at each point of [a, b) and if f (b−) =
limh↘0 f (b − h) exists. An arc

�

αβ of length p, p < b − a corresponds either to an inter-
val of the form [α, β] if a ≤ α < β ≤ b where β = α + p or to the union of [α, b] and
[a, β] when (b − α) + (β − a) = p.
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Theorem 2. Let f be almost continuous on the circle [a, b). Then for every p ∈ (0, b−a)

there is an arc
�

αβ of length p so that

f (b−) − f (a)

b − a
= f (β) − f (α)

p
,

where f (β) must be taken to be f (b−) when α + p = b.

Let m = f (b−)− f (a)
b−a and f ∗(x) = f (x) − mx for x ∈ [a, b). Extend f ∗ to R by making

it (b − a)-periodic. Then f ∗ is continuous at b and hence continuous. Integration over a
period is independent of the starting point, so

∫ b

a

{
f ∗(x + p) − f ∗(x)

}
dx = 0.

Since f ∗ is continuous, the integrand must be 0 at some point x0. So if
�

αβ is the arc
determined by x0 and x0 + p, 0 = f ∗(x0 + p) − f ∗(x0) = f (β) − f (α) − mp.

2 Higher dimensions

There is also a d-dimensional analogue of all this. Everything works inductively and
easily, so we restrict our discussion to d = 2. Fix a function f : R

2 → R. By a box
we mean a closed non-degenerate rectangle with sides parallel to the axes. For a box
B := [a, a + P] × [b, b + Q], an analogue of the mean value theorem asserts that if f is
continuous on B and if fxy exists on the interior of B , then there is a point (r, s) interior
to B so that

�B

P Q
= fxy(r, s)

where �B = f (a + P, b + Q) + f (a, b) − f (a + P, b) − f (a, b + Q). The proof of this
is a straightforward induction ([2, Proposition 2; also 4]). (In d dimensions, �B becomes
an alternating sum of the evaluations of f at the 2d vertices of a d-dimensional cuboid,
P Q becomes the volume of that cuboid, and fxy becomes fx1x2...xd .) The analogue of our
original question becomes this.

Question. Let (p, q) ∈ (0, P) × (0, Q) be given. Must there be a box b ⊂ B of dimen-
sions p × q so that

�B

P Q
= �b

pq
?

The answer is just what you would expect: “yes” if (p, q) is in
{ P

2 , P
3 , P

4 , . . .
} ×{

Q
2 , Q

3 , Q
4 , . . .

}
, and “no” otherwise. To prove the “yes” part first notice that if B is

a finite union of nonoverlapping boxes Bi , then �B = ∑
i �Bi ; then proceed as in

the one dimensional proof by writing �B
P Q = �B

|B| as an average of P Q
pq terms �Bi|Bi | . A

counterexample when P = np + ε for some natural number n and some ε ∈ (0, p)
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is y
(

sin2 π x−a
p − x

P sin2 π P
p

)
, and there is a similar counterexample when Q is not a

proper multiple of q .

Some history: If Theorem 1 is called “the Mean Value Theorem for Differences”, then the
corresponding result when f (a) = f (b) = 0 might be called “Rolle’s Theorem for Differ-
ences”. As in the infinitesimal case, the two results are quite equivalent. The positive part
of the theorem above appeared in 1806 and the negative part, at least for Rolle’s Theorem
for Differences, in 1934. See [3], where Rolle’s Theorem for Differences is called “the
Universal Chord Theorem”, for these facts and many more. I thank R. Narasimhan for
calling my attention to the very entertaining reference [3].
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