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1 Introduction
A Heron triangle � is a triangle whose sides a, b, c and area

A = √
s(s − a)(s − b)(s − c)

are integers. Here, s = (a + b + c)/2 is the semiperimeter of �. The triangle is called
reduced if gcd(a, b, c) = 1. For a positive integer n let P(n) be the largest prime fac-
tor of n with the convention that P(1) = 1. In [5], it was shown that P(A) → ∞ as
max{a, b, c} → ∞ through triples which are sides of reduced Heron triangles. In [4], it
was shown that also P(abc) → ∞ again as max{a, b, c} → ∞ through triples which are
sides of reduced Heron triangles. Here, we improve this to:

Theorem 1. P(bc) goes to infinity as max{a, b, c} goes to infinity through triples which
are sides of reduced Heron triangles �.

The example a = m2 − n2, b = 2mn, c = m2 + n2 with m = 2k (with any k ≥ 1) and
n = 1 shows that in the above statement one cannot replace P(bc) by P(b).

.

Ein Heronsches Dreieck ist ein Dreieck, dessen Seiten und dessen Fläche ganzzahlig
sind. Das Heronsche Dreieck wird reduziert genannt, wenn dessen Seitenlängen zu-
einander teilerfremd sind. Wir sagen, dass ein Dreieck � mit den Seiten a, b, c gegen
unendlich strebt, wenn max{a, b, c} → ∞ gilt. Es ist nun bekannt, dass der grösste
Primfaktor des Produkts abc der Seiten von � gegen unendlich strebt, wenn das Drei-
eck � eine Folge reduzierter Heronscher Dreiecke durchläuft, die gegen unendlich
streben. In der vorliegenden Arbeit verallgemeinert der Autor dieses Ergebnis dahin-
gehend, dass unter den genannten Voraussetzungen auch der grösste Primfaktor des
Produkts zweier Seiten von � gegen unendlich strebt. Es ist bekannt, dass ein entspre-
chendes Resultat für eine einzige Seite von � nicht unbedingt gelten muss.
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2 Preliminary results
We shall use some classical results from the theory of Diophantine equations with S-units.
Let us first define the concept of S-unit.

Let K be an algebraic number field. Let S ⊂ K∗ be a finitely generated subgroup of K∗.
The elements in S will be called S-units. Let s ≥ 2 and a1, . . . , as ∈ K∗ be non-zero. The
equation

a1x1 + . . . + as xs = 1, (1)

where x1, . . . , xs ∈ S is called an S-unit equation. If
∑

i∈I ai xi 	= 0 for all non-empty
subsets I ⊂ {1, . . . , s}, then the S-unit equation (1) is called non-degenerate.

The most important result about S-unit equations is the following finiteness theorem (see,
for example, [3]).

Theorem 2. The non-degenerateS-unit equation (1) has only finitely many solutions x =
(x1, . . . , xs) ∈ Ss .

Another result which will be useful to us is the following:

Theorem 3. If x ∈ K, y ∈ S and z ∈ S satisfy

x2 = y − z,

then y/z can take only finitely many values.

Proof. Since S is finitely generated as a group, it follows that there exists a finite set
C ⊂ S such that y = ay5

1 and z = bz5
1, where a, b ∈ C and y1, z1 ∈ S. For example, if

S is generated by ρ1, . . . , ρr , we can take C to be the set consisting of
∏r

i=1 ρ
ei
i , where

ei ∈ {0, 1, . . . , 4} for all i = 1, . . . , r . Thus, we get the finite collection of Diophantine
equations

x2 = ay5
1 − bz5

1 for (a, b) ∈ C2.

By a theorem of Darmon and Granville [2], each one of the above equations has the prop-
erty that y1/z1 belongs to a finite set. Since a/b can take only finitely many values also, it
follows that y/z = (a/b)(y1/z1)

5 can take only finitely many values as well.

3 The proof of Theorem 1
Assume that P(bc) does not tend to infinity. Let P ≥ 2 be a number such that P(bc) ≤ P
holds for infinitely many reduced Heron triangles. Let K = Q[i ], and let S be the subgroup
of K generated by the units of K (which are ±1, ±i ), and by all the primes in Z[i ] of
absolute value ≤ P . Recall that if p ≡ 3 (mod 4) is a prime number, then p is a prime
in Z[i ] also. If p ≡ 1 (mod 4), then p = a2 + b2 = (a + bi)(a − bi) and both numbers
a + bi and a − bi are primes in Z[i ]. Furthermore, 2 = i(1 − i)2 and 1 − i is a prime.
Finally, all primes in Z[i ] are obtained as above up to multiplication by units.

Let (a, b, c) be the sides of one of the infinitely many reduced Heron triangles such that
P(bc) ≤ P . Brahmagupta taught us that up to symmetries all reduced Heron triangles
ABC have sides of shape

a = (v + w)(vw − u2), b = v(u2 + w2), c = w(u2 + v2), (2)
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where u, v, w are positive integers, gcd(u, v,w) = 1, vw > u2 > v2w/(2v + w) and
v ≥ w ≥ 1 (see [1]). Since the above parametrization (2) is given up to permutations of
the sides a, b, c, we have to consider three different cases.

Case 1. P(bc) ≤ P .

In this case, b = v(u + iw)(u − iw) ∈ S, and c = w(u + iv)(u − iv) ∈ S. It then follows
that there exist two numbers s1 and s2 ∈ S such that

u + iw = s1, and u + iv = s2.

Conjugating the above relations, and eliminating w and v, we get

2u = s1 + s1 = s2 + s2.

Thus,
s1 + s1 − s2 − s2 = 0.

The above equation is an S-unit equation. We can rewrite it as

s1s−1
2 + s1s−1

2 − s2s−1
2 = 1. (3)

Assume that equation (3) is non-degenerate. Then, by Theorem 2, each of s1/s2, s1/s2 and
s2/s2 can take only finitely many values. In particular, each of s1/s1 and s2/s2 can take
only finitely many values. Since

s1

s1
= u + iw

u − iw
= u/w + i

u/w − i
,

it follows that u/w can take only finitely many values. Similarly,

s2

s2
= u/v + i

u/v − i
,

so u/v can take only finitely many values. In particular, v/w = (u/w)/(u/v) can take
only finitely many values. Now observe that if we scale all three sides a, b, c by vw2 we
get that the triangle of sides (a, b, c) is similar to the triangle of sides

(
(v/w) + 1)(1 − (u/v)(u/w)), (u/w)2 + 1, (u/v)(u/w) + (v/w)

)
,

so our triangle is similar to some triangle from a finite list. Since the triangle is reduced,
we get that there are only finitely many possibilities for this triangle.

Thus, it must be the case that equation (3) is degenerate for infinitely many of our triangles.
In particular, either s1 = s2, or s1 = s2, or s2 = s2. The last case is impossible since it
leads to v = 0. The first two cases lead to |s1|2 = |s2|2, therefore u2 + v2 = u2 + w2.
Hence, v = w. Now

u2 = (u2 + v2) − v2,

and both y = u2 + v2 and v2 are S-units. By Theorem 3, it follows that (u2 + v2)/v2

belongs to a finite list. Thus, u/v can take only finitely many values, and since v = w, an
argument similar to the one above shows that our triangle is similar to one from a finite
list.
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Case 2. P(ab) ≤ P .

Here, we have v + w ∈ S, v ∈ S and u2 + w2 = (u + iw)(u − iw) ∈ S. From the first
two relations, we get that w = s1 − s2, where s1 = v, s2 = v +w are in S. From the third,
we get that u + iw = s3 ∈ S. Thus, w = (s3 − s3)/(2i). Thus, we get the equation

s1 − s2 = (2i)−1s3 − (2i)−1s3. (4)

Let us show that this S-unit equation is non-degenerate. Indeed, if it were degenerate, then
either s1 = s2, or s1 = (2i)−1s3, or s1 = −(2i)−1s3. The first possibility leads to s3 = s3,
therefore w = 0, which is false. The other two imply that the real part of s3 (which is u)
is zero, which is again impossible. Thus, equation (4) is non-degenerate. Rewriting it as

(2i)s1s−1
3 − (2i)s2s−1

3 + s3s−1
3 = 1,

and applying Theorem 2, we get that s1/s3, s2/s3 and s3/s3 belong to a finite list of
numbers. Since s3/s3 = ((u/w) − i)/((u/w) + i) belongs to a finite list of numbers,
it follows that u/w can take only finitely many values. Furthermore, 1 + w/v = s2/s1
belongs also to a finite list of numbers, therefore w/v can take only finitely many values
also. We now get, as in Case 1, that there only finitely many reduced Heron triangles with
this property.

Case 3. P(ac) ≤ P.

This is identical to Case 2 after interchanging v and w.

The theorem is therefore proved. �
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