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The projective linear groups over finite fields give families of nonabelian finite simple
groups and it is natural to wonder as to which groups are of the form G/Z(G) for some
group G, where Z(G) denotes the center of G. In fact, ideally one would like to character-
ize all of them. It is natural to believe such a characterization could probably be obtained
from the theory of central extensions. Indeed, these groups have been studied under the
name of capable groups for some time now. Let us first think about the (far) simpler prob-
lem of finite abelian groups which are of this form. The answer turns out to be simple
but interesting. Before stating the result, let us notice that the question is about 2-step
nilpotent groups, since G/Z(G) is nontrivial, abelian if and only if G is 2-step nilpotent.

To exemplify the result, let us look at the example of the quaternion group

H = {1, +i, +j, £k}

Nach Einfiihrung des Gruppenbegriffs in der Algebra besteht eine der ersten Aufgaben
darin, Gruppen kleiner Ordnung zu klassifizieren. Beispielsweise stellt Serge Lang in
seinem Standardwerk zur Algebra die Aufgabe, alle Gruppen der Ordnung kleiner oder
gleich 10 bis auf Gruppenisomorphie zu bestimmen. Dazu werden Struktursitze her-
angezogen, die am Anfang der Gruppentheorie stehen. Einer dieser Sétze besagt, dass
unter der Voraussetzung der Zyklizitdt der Faktorgruppe G/Z(G) von G nach dem
Zentrum Z(G) die Gruppe G selbst abelsch ist. In der vorliegenden Arbeit wird eine
Variation dieser Fragestellung untersucht. Der Autor stellt sich die Frage, welche end-
lichen abelschen Gruppen A in der Form G /Z(G) auftreten, wobei das Zentrum Z(G)
zyklisch ist (und die Gruppe G nicht mehr endlich zu sein braucht). Er beweist unter
diesen Voraussetzungen, dass die Isomorphie A = B x B mit einer abelschen Gruppe
B besteht. Insbesondere kann eine endliche abelsche Gruppe A nicht von der Form
G/Z(G) sein, wenn die Ordnung von A keine Quadratzahl ist.
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with the multiplication rules ij = k = —ji,i> = j*> = k> = —1. Note that its center Z is
{£1}. One has H/Z = Z/27Z x Z/27Z. Indeed, one isomorphism is given by mapping +1
to (0, 0), %i to (1,0), £ to (0, 1) and %k to (1, 1).

Theorem.

(a) Let A be a finite abelian group which is isomorphic to G/ Z(G) for some (possibly
infinite) group G whose center Z(G) is cyclic. Then A = B x B for some abelian
group B. In particular, finite abelian groups of non-square order can never be ex-
pressed as G/ Z(G) for some G with cyclic center Z(G).

(b) Conversely, let A be a finite abelian group. Then, the additive group A x A* is
isomorphic to G/ Z(G) for some group G. Here A* = Hom(A, SV), the character
group.

(c) There exist abelian groups of non-square orders which are of the form G/ Z(G) with
the center Z(G) non-cyclic.

Proof. (a) Firstly, suppose that G is any finite group such that G/Z(G) is abelian. We
write Z in place of Z(G) for simplicity as there will be no confusion here. Then, the
commutator map ¢ : G x G — G maps into Z. Moreover, it clearly induces a map (again
denoted by ¢) from G/Z x G/Z to Z. Using the fact that the values are in the center Z,
it follows that ¢ : G/Z x G/Z — Z is bilinear. Moreover, c is non-degenerate because
ifc(xZ,yZ) = 1forall yZ € G/Z, then x € Z; thatis, xZ is the identity in G/Z. We
note that ¢ is evidently skew-symmetric. Now, as Z is cyclic, we may take a character of
itinto S'; the corresponding bilinear form is again non-degenerate. Then, from the theory
of bilinear forms, one has G/Z = M x M for a maximal totally isotropic subgroup M of
G/Z. Note that M = A/Z where A is a maximal abelian subgroup of G containing Z.
Thus, any abelian group isomorphic to G/Z with finite G which has cyclic center Z, must
be isomorphic to M x M for some group M.

To complete the proof of part (a), we need to show that if a finite abelian group A is of the
form G/Z(G) for some group G, then it is also isomorphic to a group of the form F/Z(F)
where F is finite and, further, if Z(G) is cyclic, then we can choose F with Z(F) cyclic.
To see this, we will observe first that G can be assumed to be finitely generated. Writing
A=G/Z(G) ={g1Z(G), ..., gnZ(G)}, we take G be the subgroup of G generated by
g1, ..., &n- Notethat G| - Z(G) is a subgroup of G and G = U?:l 8iZ(G) < G-Z(G)
whichmeans G = G1-Z(G). Now, each element of Z(G1) commutes with any element of
G1 as well as with any element of Z(G) and, therefore, with the whole of G1 - Z(G) = G
itself. In other words, Z(G1) < Z(G) and hence Z(G{) = Z(G) N G1. Hence, we have

G/Z(G) = G- Z(G)/Z(G) = G1/(Z(G) N G1) = G1/Z(G).

Note also that if Z(G) is cyclic, then so is Z(G1) = Z(G) N G1. Thus, we may replace
G by G and assume that G is finitely generated. Now, since Z(G) is of finite index in
G, it is a finitely generated abelian group. Writing Z(G) = ZirZo Where Zj is the free
abelian part and Z,; is the torsion part, we look at the finite group H = G/Zy. We have
[G, G] < Z(G) as G/Z(G) is abelian. But in any group G where Z(G) has finite index
n, the commutator subgroup [G, G] is a finite n-torsion group by a famous theorem due to
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Schur. Indeed, in the special case we have considered, viz., when G/Z(G) is abelian, this
is far easier as we show now. Let n denote the order of the abelian group G/Z(G). So,
[G, G] < Z(G). Also, g" € Z(G) for any g € G and, we have

yx Hr=xy"x ' =y" Vx,yeG.
Using this and the fact that [G, G] < Z(G), we have for any x, y € G that
Y= (yx T = Gy Ty Ty = oy Ty Ty
which implies
yx~ 'y =1

As [G, G] is abelian and is generated by commutators, we have u" = 1 forall u € [G, G].
But, [G, G] is a finitely generated abelian group — it can be generated by the commutators
titj ti_ltj_l where G = U?:l Z(G)t;. Hence [G, G] is a finite, abelian, n-torsion group.
That is, [G, G] < Zior. Thus, if g9Zo € Z(H), then [go, g] € Z for all g € G. However,
[g0, g1 € Zior; hence [go, g] = 1 and so gop € Z(G). Hence the coset goZy € zZg for
some z € Zior. Conversely, every coset in H of the form zZg with z € Zy is in Z(H).

Therefore, Z(H) = Z(G/Zo) = Z(G)/Zo = Zior- Thus, A = H/Z(H). Further, clearly
if Z(G) is cyclic, then so is Z(H) = Z(G)/Zy. This completes the proof of part (a).

(b) Conversely, for any finite abelian group A, look at the group G = A x A*. If A has
order n, then we have amap f : G x G — u, given by

fa, x), @, x") = x@).

Here, i1, is the subgroup of n-th roots of unity in S'. Note that f satisfies the so-called
2-cocycle condition

f(g.8)fgg' 8" =1rg.¢")rf(g g8

because x (a")(xx")(@") = x'(a")x(a’a") foreach a,a’,a"” € A and x, x" € A*. Now,
let us consider the set G := G x u, as a group under the multiplication

(8.x)(g', x") = (gg', xx" f(g. 8").

Note that associativity is precisely the 2-cocycle condition satisfied by f. The identity
elementis (1, 1) and

g0 ' ="t g e Hh = x@)

where g = (a, x). Evidently, u,, sits as a subgroup of G by the second inclusion because
f(1,1) = 1; we claim that it is the center of G. Indeed, ((a, x), t) is in the center if and
only if, x(a’) = x'(a) foralla’ € A, x’ € A*. This forcesa = 1in A and x = | in A*
and ¢ is arbitrary. Hence, we have that G = G /u,,. The proof of part (b) is complete.

(c) Let F be a finite field and E C F be a proper subfield. Consider the group

1 a ¢
G:{(O 1 b):b,ceF;aeE}.
0 0 1
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Note that if we denote a typical element of G by g(a, b, ¢), then
gla,b,c)gd,b',c)=gla+a ,b+b, ab +c+ ).

Note g(a, b, c)~' = g(—a, —b, ab—¢). Now, g(a, b, ¢) € Z(G) if and only if ab’ = a’b
forall @’ € E,b’ € F. Thus, some g(a,0,c) € Z(G) if and only if ab’ = 0 for all
b’ € F; thatis, if and only if @ = 0. On the other hand, if some g(a, b, ¢) € Z(G) with
b # 0, then g(a, b, c)g(1,0,0) = g(1,0,0)g(a, b, c) gives 0 = b, a contradiction. Thus,
Z(G) = {g(0,0,c¢) : c € F}. Note that G/Z(G) = E @ F which can have non-square
order (for instance, if £ = F), F = sz. We finally note that Z(G) is not cyclic. The
proof of (c) is complete. (]

An example.

In the proof of part (a) of the theorem, we used the cyclicity of Z and the existence of non-
degenerate alternating bilinear forms to conclude that the group has square order. This can
fail in general if Z is not cyclic. For instance, for any prime p, there is a non-degenerate
alternating bilinear form on (Z/pZ)> with values in (Z/pZ) x (Z/pZ). This is because a
bilinear form with values in (Z/pZ) x (Z/pZ) is a pair of forms with values in Z/pZ. If
we take a pair of alternating forms on (Z/ pZ)3 whose null spaces are different, we get an
example.

Remarks.

(a) In fact, an argument given in the theorem can be generalized to prove (see [1]) that
any finite group of the form G/Z(G) is isomorphic to one of the form H/Z(H)
where H is finite.

(b) The allusion to the Heisenberg group in the title can be explained briefly as follows.
If Q is a non-degenerate alternating form on a real vector space V (which must thus
necessarily have some even dimension 2n), recall that the corresponding Heisenberg
group H (V, Q) is defined as the set V x R under the operation

(v, s)(w t):(v—i—w s—i—t—i-lQ(v w))
9 9 9 2 9 .

The center of this group is Z := {(0,¢) : t € R} and the quotient H(V, Q)/Z =
R" x R” as Lie groups. The group R" on the right side is the Pontryagin dual group
of R" (and hence isomorphic to it). Our result above shows that this is essentially
the only way to produce analogously a finite abelian group of the form G/Z(G) for
some group G. In an epoch-making paper ([2]), André Weil uses the action of the
symplectic group of (V, €2) on the Heisenberg group to define a projective represen-
tation, the so-called Weil representation. In particular, he extends this construction
to the situation where R” is replaced by any group isomorphic to its Pontryagin dual.
These developments have not only allowed us to do harmonic analysis on locally
compact groups which arise in number theory but have also given a representation-
theoretic description of theta functions.
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