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1 Introduction

Throughout this article, we let [x] denote the integer part of a given real number x ; also,
we let (pn)n∈N denote the sequence of all prime numbers and we set �pn := pn+1 − pn

for any n ∈ N. Further, if A is a subset of R and x is a real number, we will let A + x
denote the subset of R defined by A + x := {a + x | a ∈ A}.
In [4], Mills proved the existence of an absolute constant A > 1 for which [A3n ] is a prime
number for any positive integer n and in [6], Wright proved the existence of an absolute
constant α > 0 for which the infinite sequence [α], [2α], [22α ], . . . is composed of prime
numbers. Let us describe the method used by these two authors. They start from an upper
bound for �pn as a function of pn . Such an upper bound allows to construct an increasing
function h (more or less elementary, according to the used upper bound of �pn) such that

.

Ein klassisches Problem der Zahlentheorie ist die Suche nach einfachen Formeln zur
Erzeugung von Primzahlen. So bewies W.H. Mills im Jahr 1947, dass eine Konstante
A > 1 existiert, so dass die natürliche Zahl [A3n ] für alle positiven natürlichen Zahlen
n eine Primzahl ist; hierbei bedeutet [x] den ganzzahligen Anteil der reellen Zahl x .
Vier Jahre später wies der Zahlentheoretiker E.M. Wright die Existenz einer Konstan-
ten α > 0 nach, so dass die Folge [α], [2α], [22α ], . . . aus lauter Primzahlen besteht. In
dem nachfolgenden Beitrag gelingt es dem Autor, unter der Annahme der Cramérschen
Vermutung zu vorgegebenem ξ > 1 jeweils eine reelle Zahl A = A(ξ) > 1 zu kon-
struieren, so dass die Grösse [Anξ ] für alle n ∈ N, n > 0, eine Primzahl ist. Das In-
teressante an dieser Konstruktion ist, dass die auf diese Weise erzeugte Primzahlfolge
deutlich langsamer als die von Mills und Wright gegebenen Folgen wächst.
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between any two consecutive terms of the sequence (h(n))n , there is at least one prime
number. Setting fn := h ◦ . . . ◦ h (where h is applied n times), they deduce from the
last fact, the existence of a real constant A for which the sequence ([ fn(A)])n consists of
prime numbers.

With this method, Wright used the upper bound �pn ≤ pn, which is nothing else than
Bertrand’s postulate, and Mills used Ingham’s upper bound �pn ≤ p5/8+ε

n , which is valid
for any n sufficiently large depending on the given ε > 0. The functions h, which are
derived from these upper bounds, are h(x) = 2x for Wright and h(x) = x3 for Mills.
Then, the theorems of [4] and [6] follow.

Notice that the more the upper bound of �pn is refined, the more the function h will
be smaller and the more the obtained sequence of prime numbers will grow slowly (for
instance, the sequence of Mills grows more slowly than Wright’s one). From this fact, in
order to have a sequence of prime numbers which grows even more slowly, we must use
more refined upper bounds for �pn. But up to now even the powerful Riemann hypothesis
gives only the estimate �pn = O(p1/2

n log pn). A famous conjecture (which is a little
too strong compared with the last estimate) states that between two consecutive squares,
there is always a prime number (see [2]). So, according to this conjecture, the function
h(x) = x2 is admissible for the method described above, which permits to conclude the
existence of a constant B > 1 for which [B2n ] is a prime number for any positive integer
n. We thus obtain (assuming this conjecture), a sequence of prime numbers growing more
slowly than Mills’ one.

Based on heuristic and probabilistic arguments, Cramér [1] was led to the conjecture that
�pn = O(log2 pn); note that it is known that �pn = O(log pn) cannot hold (see [5]).
Thus, by taking for the method described above h(x) = c log2 x (c > 0), we obtain
(via Cramér’s conjecture) sequences of prime numbers having an explicit form and grow-
ing much more slowly than Mills’ one. The inconvenience of this application is that the
explicit form in question [ fn(A)] is not elementary, because fn does not have a simple
expression as a function of n.

To overcome this problem, we were led to generalize Mills’ method by considering instead
of one function h, a sequence of functions (hm)m and, hence, in this situation fn is rather
the composition of n functions h0, . . . , hn−1. This allows to give for fn the form which we
want, and if we set hn := fn+1 ◦ f −1

n , we have only to check whether it is true that for any
n and any x sufficiently large (relative to n), the interval [hn(x), hn(x + 1) − 1[ contains
at least one prime number or not. In the affirmative case, we will deduce the existence
of a real number A for which the formula [ fn(A)] gives a prime number for any positive
integer n (see Theorem 1 and its proof).

Under a conjecture weaker than Cramér’s one, we derive from this generalization two new
types of explicit formulae giving prime numbers. We also give other applications of our
main result (outside the subject of prime numbers) and we conclude this article by some
open questions related to the results which we obtain.
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2 Results
The main result of this article is the following theorem.

Theorem 1 Let I =]a, b[ (with a, b ∈ R, a < b) be an open interval of R, n0 a non-
negative integer and ( fn)n≥n0

a sequence of real functions, which are differentiable and
increasing on I .
Assume that the functions f ′

n+1/ f ′
n (n ≥ n0) are non-decreasing on I and that for all

x ∈ I , the sequence ( fn(x))n≥n0
is increasing. Further assume that there exists a real

function g, non-decreasing on R and verifying

(g ◦ fn+1)(x) ≤ f ′
n+1

f ′
n

(x) (∀n ≥ n0, ∀x ∈ I ). (1)

Then, for any sequence of integers (un)n, verifying lim sup
n→+∞

un = +∞,

un+1 − un ≤ g(un) − 1 (∀n ≥ n1), (2)

and for which at least one of the terms un belongs to fn0(I ) ∩ ( fn0(I ) − 1), there exists a
real A ∈ I , for which the sequence ([ fn(A)])n≥n0

is an increasing subsequence of (un)n.

Proof . By shifting, if necessary, the sequence of functions ( fn)n≥n0
, we may assume that

n0 = 0 and by shifting, if necessary, the sequence (un)n , we may assume that we have

un+1 − un ≤ g(un) − 1 (∀n ∈ N). (2′)

We begin the proof by some remarks and preliminary notations which allow to simplify
the situation of the theorem.

Since the function fn for given n ∈ N is assumed to be differentiable (hence continuous)
and increasing on I =]a, b[, it is a bijection from I onto fn(I ) =]λn, µn[, where λn :=
lim
x→a

fn(x) and µn := lim
x→b

fn(x) (λn and µn belong to R). Now, let us introduce the

following functions

hn : ]λn, µn[ −→ ]λn+1, µn+1[ defined by hn := fn+1 ◦ f −1
n (∀n ∈ N).

Since the functions fn and fn+1 for given n ∈ N, are differentiable and increasing on I ,
the function hn is differentiable and increasing on ]λn, µn[. Further, the hypothesis of the
theorem concerning the growth of the sequence ( fn(x))n (x ∈ I ) amounts to

hn(x) > x (∀n ∈ N, ∀x ∈ ]λn, µn[ ). (3)

Next, let us show that for any n ∈ N, the function hn is convex on ]λn, µn[. To do this,
we check that the derivative h′

n (n ∈ N) is non-decreasing on the interval ]λn, µn[. Given
n ∈ N, we have

h′
n = ( fn+1 ◦ f −1

n )′ = ( f −1
n )′ · f ′

n+1 ◦ f −1
n = f ′

n+1 ◦ f −1
n

f ′
n ◦ f −1

n
= f ′

n+1

f ′
n

◦ f −1
n .

Since the function f ′
n+1/ f ′

n is non-decreasing on I and the function f −1
n is increasing

on fn(I ) =]λn, µn[ the function h′
n (as a composite of two non-decreasing functions), is

non-decreasing on ]λn, µn[. So the function hn is effectively convex on ]λn, µn[.
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The rest of the proof consists of the following three steps:

1st Step: We are going to show that we have

(g ◦ hn)(y) ≤ hn(y + 1) − hn(y) (∀n ∈ N, ∀y ∈]λn, µn − 1[). (4)

In fact, we will see later that the interval ]λn, µn − 1[ is never empty. Let n ∈ N and
y ∈]λn, µn − 1[ be fixed and set x := f −1

n (y). The convexity of hn on ]λn, µn[, proved
above, implies that we have

hn(u) ≥ h′
n(t)(u − t) + hn(t) (∀t, u ∈]λn, µn[).

By taking in this last inequality t = y and u = y + 1, we obtain

hn(y + 1) − hn(y) ≥ h′
n(y)

=
( f ′

n+1

f ′
n

)
(x)

(
because h′

n = f ′
n+1

f ′
n

◦ f −1
n and x = f −1

n (y)
)

≥ (g ◦ fn+1)(x) (from hypothesis (1) of the theorem)

= (g ◦ fn+1 ◦ f −1
n )(y)

= (g ◦ hn)(y).

The relation (4) now follows.

2nd Step: We are going to construct an increasing sequence (kn)n∈N of non-negative
integers such that the subsequence of (un)n with general term vn = ukn satisfies

{
vn ∈ ]λn, µn − 1[ ,

hn(vn) ≤ vn+1 < hn(vn + 1) − 1
(∀n ∈ N).

We proceed by induction as follows:

• We pick k0 ∈ N such that uk0 ∈ f0(I ) ∩ ( f0(I ) − 1) =]λ0, µ0 − 1[. Notice that the
existence of such an integer k0 is a hypothesis of the theorem.

• If, for some n ∈ N, an integer kn ∈ N is chosen such that ukn ∈]λn, µn − 1[, let

Xn := {
k ∈ N | k > kn and uk ≥ hn(ukn )

}
.

From the hypothesis lim supn→+∞ un = +∞, the subset Xn of N is non-empty, it thus
admits a smallest element which we call kn+1. So, we have

kn+1 > kn, ukn+1 ≥ hn(ukn ), and kn+1 − 1 �∈ Xn .

We claim that the facts “kn+1 > kn” and “kn+1 − 1 �∈ Xn” imply

ukn+1−1 < hn(ukn ). (5)
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Indeed, either kn+1 = kn + 1, in which case we have ukn+1−1 = ukn < hn(ukn ) from
(3), or kn+1 > kn + 1, that is kn+1 − 1 > kn . But since kn+1 − 1 �∈ Xn , we must have
ukn+1−1 < hn(ukn ), as required. It follows

ukn+1 ≤ ukn+1−1 + g(ukn+1−1) − 1 (from (2′))
< hn(ukn ) + (g ◦ hn)(ukn ) − 1 (using (5) and since g is non-decreasing)

≤ hn(ukn + 1) − 1 (from (4)).

Hence, we have
ukn+1 < hn(ukn + 1) − 1,

and thus
hn(ukn ) ≤ ukn+1 < hn(ukn + 1) − 1.

Since the function hn takes its values in ]λn+1, µn+1[, the last inequality shows that
ukn+1 ∈]λn+1, µn+1 − 1[. This ensures that the induction process works and gives the
required sequence (kn)n . Notice also that the subsequence (vn)n of (un)n , which we have
just constructed, is increasing because we have vn+1 ≥ hn(vn) > vn by (3) for any n ∈ N.

3rd Step: To conclude the proof, we will show the existence of a real A ∈ I , for which
we have vn = [ fn(A)] for any n ∈ N. To do this, we introduce two real sequences (xn)n
and (yn)n , with elements in I , which we define by

xn := f −1
n (vn) and yn := f −1

n (vn + 1) (∀n ∈ N).

Since the functions fn are increasing, we have xn < yn for all n ∈ N. We claim that the
sequence (xn)n is non-decreasing and that the sequence (yn)n is decreasing. Indeed, for
any n ∈ N, we have

xn = f −1
n (vn) = ( f −1

n+1 ◦ hn)(vn) ≤ f −1
n+1(vn+1) = xn+1

and
yn = f −1

n (vn + 1) = ( f −1
n+1 ◦ hn)(vn + 1) > f −1

n+1(vn+1 + 1) = yn+1.

In these last relations, we have just used the facts that f −1
n+1 is increasing and hn(vn) ≤

vn+1 < hn(vn + 1) − 1. The intervals [xn, yn] (n ∈ N) are thus nested intervals of R.
Consequently, their intersection is non-empty according to Cantor’s intersection theorem.
Pick A an arbitrary real number belonging to this intersection, i.e., xn ≤ A ≤ yn for all
n ∈ N, in particular A ∈ I . In fact, A verifies even

xn ≤ A < yn (∀n ∈ N),

because if A = ym for some m ∈ N, we will have, since the sequence (yn)n decreases,
A > ym+1, contradicting the inequality A ≤ ym+1. It follows from the growth of the
functions fn that we have

fn(xn) ≤ fn(A) < fn(yn) (∀n ∈ N),
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that is
vn ≤ fn(A) < vn + 1 (∀n ∈ N).

Then, since vn is an integer for all n ∈ N, we conclude

[ fn(A)] = vn (∀n ∈ N).

This completes the proof. �
Remarks. Mills’ theorem [4] can be recovered by applying Theorem 1 for I =]1,+∞[,
n0 = 0, fn(x) = x3n

(n ∈ N, x ∈ I ), g(x) = x2/3, if x > 0 and g(x) = 0, if x ≤ 0,
and (un)n the sequence of prime numbers. In this application, we check relation (1) of
Theorem 1 by simple calculus and we deduce relation (2) from Ingham’s estimate quoted
in the introduction. The remaining hypotheses of Theorem 1 are immediately verified.

Wright’s theorem [6] can also be recovered, by applying Theorem 1 for I =]0,+∞[,
n0 = 0, ( fn)n the sequence of functions which is defined on I by f0 = IdI and fn+1 = 2 fn

(n ∈ N), g(x) = (log 2)x (∀x ∈ R), and (un)n the sequence of prime numbers. In order to
check relation (1) of Theorem 1, note that we have f ′

n+1/ f ′
n = (log 2) fn+1 for any n ∈ N.

Relation (2) is a consequence of the prime number theorem, but it can be obtained by using
elementary arguments due to Chebyshev (see [3]). The remaining hypothesis of Theorem
1 is immediately verified.

N.B. In the above two applications of Theorem 1, the sequence of functions (hn)n in-
troduced in the proof is constant. Indeed, for the first application, we have hn(x) = x3

(n ∈ N) and for the second one, we find hn(x) = 2x (n ∈ N). As explained in the intro-
duction, the possibility of taking (hn)n not constant is the crucial point of our approach. In
the following, we are going to give some applications of Theorem 1 in which the sequence
(hn)n is not constant. If we admit the following conjecture (which is weaker than Cramér’s
one [1]), we obtain two new types of explicit sequences of prime numbers, which grow
much more slowly than the ones of Mills and Wright.

Conjecture 2 There exists an absolute constant k > 1 such that

�pn = O
(
(log pn)

k
)

.

Under this conjecture, we obtain by applying Theorem 1, the following two corollaries.

Corollary 3 Assuming Conjecture 2, there exists for all real numbers ξ > 1, a real num-
ber A = A(ξ) > 1, for which the sequence ([Anξ ])n≥1 is an increasing sequence of prime
numbers.

Proof . Let ξ > 1 be fixed, k > 1 an admissible constant as in Conjecture 2, and a > 1 a
real number such that

(log x)k+1 ≤ x1/2 (∀x > a), (6)

(n + 1)k+1 ≤ anξ−1/2 (∀n ≥ 1). (7)

Such an a exists because

lim
x→+∞(log x)k+1/x1/2 = 0 and lim

n→+∞(n + 1)2(k+1)/nξ−1 = 1.
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We apply Theorem 1 for I =]a,+∞[, n0 = 1, fn(x) = xnξ
(n ≥ 1, x ∈ I ), g(x) =

(log x)k+1, if x > 1, and g(x) = 0, if x ≤ 1, and (un)n the sequence of prime numbers.
Let us check the hypotheses of Theorem 1.

The functions fn are clearly increasing and differentiable on I . We have f ′
n(x) = nξ xnξ −1,

therefore
f ′
n+1

f ′
n

(x) =
(n + 1

n

)ξ

x (n+1)ξ−nξ

(∀n ≥ 1, ∀x ∈ I ).

We thus see that the functions f ′
n+1/ f ′

n (n ≥ 1) are non-decreasing on I . Further, if x
is a fixed real in I , the sequence ( fn(x))n≥1 is clearly increasing. Now, we have for any
integer n ≥ 1 and for any real x ∈ I :

g ◦ fn+1(x) = (n + 1)ξ(k+1)(log x)k+1

≤ aξnξ−1/2x1/2 (from (6) and (7))

≤ x ξnξ−1
(because x > a and ξnξ−1 > 1)

≤ x (n+1)ξ−nξ
(because ξnξ−1 ≤ (n + 1)ξ − nξ )

≤ f ′
n+1

f ′
n

(x).

Relation (1) of Theorem 1 now follows. Next, relation (2) of Theorem 1 follows immedi-
ately from Conjecture 2. Finally, fn0(I )∩( fn0(I )−1) =]a,+∞[ contains prime numbers
as large as we want. The hypothesis of Theorem 1 are thus all satisfied, so we can apply
this latter to the present situation. Corollary 3 follows from this application. �

Corollary 4 Assume that Conjecture 2 is true and let k > 1 be an admissible constant
in this conjecture. Then, for any positive real number ε, there exists an integer n0 =
n0(ε, k) ≥ 1 and a real number B = B(ε, k) > 0 such that the sequence ([B · n!k+ε])n≥n0

is an increasing sequence of prime numbers.

Proof . Let ε be a fixed positive real number. From Conjecture 2 (applied with the constant
k > 1), there exists a positive real number ck for which we have

pn+1 − pn ≤ ck(log pn)
k (∀n ∈ N). (8)

We apply Theorem 1 for I =]1, 2[, n0 ≥ 2 an integer (depending on k and ε) which we
pick large enough such that

ck ((k + ε)(n + 1) log(n + 1) + log 2)k + 1 ≤ (n + 1)k+ε (∀n ≥ n0), (9)

and fn(x) = n!k+εx (n ≥ n0, x ∈ I ), g(x) = ck(log x)k + 1, if x > 1, and g(x) = 1,
if x ≤ 1, and (un)n the sequence of prime numbers. In this situation, we can easily check
that the hypotheses of Theorem 1 are all satisfied. We just note that relation (1) follows
from (9), relation (2) follows from (8), and the last hypothesis of Theorem 1 concerning
the sequence (un)n = (pn)n is a consequence of Bertrand’s postulate. Corollary 4 follows
from this application. �
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Apart from the context of the prime numbers, we have the following

Corollary 5 Let (un)n∈N be a sequence of integers such that

1 ≤ lim sup
n→+∞

(un+1 − un) < +∞.

Then, we have:

(1) For any positive real number λ, there exists a real number A > 1, for which the
sequence ([λAn])n≥1 is an increasing subsequence of (un)n.

(2) For any real number A > lim supn→+∞(un+1 − un) + 1, there exists a positive
real number λ, for which the sequence ([λAn])n≥1 is an increasing subsequence of
(un)n.

Some open problems related to the preceding study:

We ask (with or without Cramér’s conjecture) the following questions:

(1) Does there exist a real number A > 1 for which [An] is a prime number for every
positive integer n? (This corresponds to the case ξ = 1 which is excluded from
Corollary 3.)

(2) More generally than (1), does there exist a couple of real numbers (λ, A), with
λ > 0, A > 1, for which [λAn] is a prime number for every positive integer n?
(This is related to Corollary 5.)

(3) Does there exist a real number B > 1, for which [B · n!2] is a prime number for
every sufficiently large non-negative integer n? (This is related to Corollary 4.)
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[5] Westzynthius, E.: Über die Verteilung der Zahlen, die zu den n ersten Primzahlen teilerfremd sind. Comm.
Phys. Math. Helsingfors 25 (1931), 1–37.

[6] Wright, E.M.: A prime-representing function. Amer. Math. Monthly 58 (1951), 616–618.

Bakir Farhi
Institut des Hautes Études Scientifiques
Le Bois-Marie
35, route de Chartres
F–91440 Bures-sur Yvette, France
e-mail: bakir.farhi@gmail.com


