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Let � be a simple closed curve in the Euclidean plane. Say that a polygon S is inscribed
in � at x if all the vertices of S lie on � and one is x . A line segment is here considered
as a 2-gon. We say that � has property Cn(D) (for some n ≥ 2, D > 0) if

∀x ∈ � there is a unique regular n-gon with edges of length D
inscribed in � at x .

(Cn(D))

Notice that C2(D) is equivalent to the following since � is simple and closed (|| · || is the
Euclidean norm):

∀x ∈ � ∃!y(x) ∈ � with ||x − y(x)|| = D, and
if z �= y(x), ||x − z|| < D.

(C(D))

If one drops the unicity assumption, C(D) is the property of having constant diameter,
which is in fact equivalent (for closed curves in the plane) to having constant width or
constant breadth (for the definitions and the proof of the equivalence, see [8, chap. 25]).
It is a surprise to many (it was to me!) that curves of constant diameter different from the

.

In der vorliegenden Arbeit sucht der Autor nach einfach geschlossenen Kurven � in
der Euklidischen Ebene, welche die folgende Eigenschaft Cn(D) besitzen: Jeder Punkt
x ∈ � ist Eckpunkt eines der Kurve � einbeschriebenen regulären n-Ecks der Sei-
tenlänge D. Im Fall n = 2 ist dieses Problem im wesentlichen äquivalent mit der Suche
nach Kurven konstanter Breite. Diese Problematik wurde bereits von vielen bedeuten-
den Mathematikern untersucht, z.B. von L. Euler, A. Hurwitz oder H. Minkowski. Mit
Hilfe elementarer Methoden zeigt der Autor in dieser Arbeit, dass es C∞-glatte Kur-
ven gibt, welche die Eigenschaft Cn(D) besitzen und nicht Kreise sind. Darüber hinaus
wird gezeigt, dass der Kreis die einzige zweifach differenzierbare Kurve ist, die sowohl
C4(1/

√
2) als auch C2(1) erfüllt.
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circle do exist. The simplest examples (attributed to Reuleaux [9], but implicit in a much
earlier paper by Euler [3]) are pictured in Fig. 1. They are built with circle arcs whose
centers are marked with a black dot. Notice that these curves are not C2.
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Fig. 1

The theory of curves of constant breadth has generated a considerable literature, starting
with Euler [3] and including works by Hurwitz [4], Minkowski [6], Blaschke (five articles
in [1]) and many others. These curves have many interesting properties, the most startling
being perhaps that their perimeter is π times their diameter. See [8, chap. 25] for an
elementary account, or [5] for a more thorough, though old, presentation. For n ≥ 3, to
our knowledge the property Cn(D) has not been investigated (but see [5, p. 61], and [2]
for a related problem).

In this note, we shall prove the theorem below, using only basic differential calculus. We
recall that a curve is regular if it is C1 with non vanishing derivative.

Theorem.

i) For all n ≥ 2 and D > 0, there are C∞ regular simple closed non circular curves �
with property Cn(D).

ii) The circle of radius D/2 is the only C2 regular simple closed curve which satisfies
both C4(

D√
2
) and C(D).

Remarks. For i) n = 2, such C∞ curves abound in the literature, see for instance [10]
or [7] for one given by a polynomial equation. We however give a short self contained
proof that yields simple explicit examples. Notice that ii) gives a definition of the circle
involving only Euclidean distance between points on the circle, while the usual definition
refers to a point off the circle.

Proof of i) for n = 2. (Inspired by Euler [3] and following G. Wanner’s comments.) To
simplify we assume that D = 2. We start with a stick of length 2 which we place horizon-
tally with center 0 at the origin. We then attach a needle at a point at position −r from 0
and we perform a small rotation of angle dφ around this point. Then at any moment we
change the position r(φ) of the needle and rotate the stick. As seen in Fig. 2, the center of
the stick then describes a curve (x(φ), y(φ)) with

dx = −r(φ) sin φ dφ, dy = r(φ) cosφ dφ,
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while the extremities of the stick follow the curve given by

γ (φ) = (x(φ), y(φ))+ (cosφ, sin φ).

d r

rd

dx

dy
x,y( )

x,y( )

Fig. 2

When the angle π is reached, the stick is again horizontal, and the position of the center is
at the origin if x(π) = y(π) = 0. The distance between γ (θ) and γ (φ) decreases (strictly
if |r(θ)| < 1) as φ ‘goes away’ from θ + π , as seen in Fig. 3. (The circle of radius 2
and center γ (θ) is dashed.) The curve obtained has thus constant diameter 2 and satisfies
C(2) if −1 < r(φ) < 1, strictly. Note that the proof works also if r is only piecewise
continuous. (A curve is piecewise continuous – or C1, regular, etc – if it is continuous – or
C1, regular, etc – everywhere, except possibly at a finite number of points.)
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Fig. 3

To summarize, we proved:

Proposition 1. Let r : R → R
2 be piecewise continuous and

x(θ) = −
∫ θ

0
r(φ) sin(φ)dφ, y(θ) =

∫ θ

0
r(φ) cos(φ)dφ.
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Suppose that

a) r(θ + π) = r(θ), |r(θ)| ≤ D
2 ,

b) (x(0), y(0)) = (x(π), y(π)) = (0, 0).

Then, the curve γ (θ) = (x(θ), y(θ))+ D
2 (cos θ, sin θ) has constant diameter D, and has

property C(D) if |r(θ)| < D
2 . �

Notice that given the path of the center (x(φ), y(φ)), the coordinate on the stick of the
‘point of instant rotation’ r(φ) is given by the equation x ′(φ) = −r(φ) sin(φ). The curves
in Fig. 1 are obtained by taking r piecewise constant. To obtain C∞ explicit examples, we
can take r(θ) = a · sin((2k + 1)θ), with k ≥ 1, a < D/2. Integrating, we get

(x(θ), y(θ)) = a

4

(
− sin(2kθ)

k
+ sin(2(k + 1)θ)

k + 1
, −cos(2kθ)

k
− cos(2(k + 1)θ)

k + 1

)
.

By Proposition 1, the curve γ (θ) = (x(θ), y(θ)) + D
2 (cos θ, sin θ) has property C(D).

One could also take any linear combination of cos((2k + 1)θ) and sin((2k + 1)θ) (k ≥ 1),
with small enough coefficients, for r(θ). In Fig. 4 are pictured the curves of diameter 1
(and (x, y)) for

r(θ) = sin(3θ)/3 + cos(3θ)/5, sin(5θ)/2.01, sin(3θ)/10 + cos(7θ)/2.501.

Fig. 4

Proof of i) for n ≥ 3. We use again G. Wanner’s needle idea, but here we have more lib-
erty. Take a regular n-gon which we rotate with angle φ from 0 to 2π/n. At any mo-
ment we have two degrees of freedom to place our needle at a point inside the body
of the n-gon, with coordinates (ξ(φ), η(φ)) in a coordinate system moving with the n-
gon. With the notations of Fig. 5 the path (x(φ), y(φ)) of the center is determined by
dx = −r sin(φ + ψ)dφ, dy = r cos(φ + ψ)dφ, and after expanding sin(φ + ψ) and
cos(φ + ψ) we get

dx = −(ξ sin(φ)+ η cos(φ))dφ, dy = (−η sin(φ)+ ξ cos(φ))dφ.

Then, the condition for the curve described by the vertices of the n-gon to be closed is

∫ 2π
n

0
(ξ(φ) sin(φ)+ η(φ) cos(φ))dφ =

∫ 2π
n

0
(−η(φ) sin(φ)+ ξ(φ) cos(φ))dφ = 0.
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Fig. 5

By construction there is of course an n-gon inscribed at each point, and since there are
exactly two points at distance D from a given point, this n-gon is unique.

To obtain explicit examples it might be easier to start with x(φ), y(φ) satisfying x(φ +
2π
n ) = x(φ), y(φ + 2π

n ) = y(φ) and let γ (φ) = (x(φ), y(φ))+ R(cos(φ), sin(φ)), where
R is the radius of the n-gon with edges of length D. Then if x, y and their derivatives are
small enough so that we do not create ‘new’ points at distance D from a given point, we
obtain a curve satifying Cn(D). �

Proof of ii). Let � be a C2 regular simple closed curve satisfying C4(D/
√

2) and C(D).
We take D = 1 for simplicity. Let γ parametrise � by arc length counterclockwise.
If x ∈ �, denote by c(x) the unique point of � for which ||x − c(x)|| = 1. If γ (t) = x ,
γ ′(t) must be normal to x − c(x), because the curve must be totally inside the “dashed
eye” of Fig. 6, and in fact, c(x) is the point on the normal at x at distance 1 from x .

1
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= ( )tx

Fig. 6
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Since the unit normal vector at γ (t) is n(t) = (−γ ′
2(t), γ

′
1(t)), c(γ (t)) = γ (t) + n(t) is

differentiable in t . (Notice that we cannot use the implicit function theorem here, because
the derivative of ||x − z|| vanishes precisely at z = c(x).) Moreover, the angle between
the oriented line segment [γ (t), c(γ (t))] and the horizontal axis strictly increases. Given
θ ∈ [0, 2π], there is thus a unique (oriented) line segment [x, c(x)] (the stick) making an
angle θ with the horizontal axis, we define G(θ) = (x(θ), y(θ)) to be (the coordinates of)
its middle point. Since c(x) is differentiable with respect to x , G(θ) is differentiable with
respect to θ . Then, γ̃ (θ) = G(θ)+ 1

2 (cos θ, sin θ) is a parametrisation of � (see Fig. 7, on
the left). By definition, c(γ̃ (θ)) = γ̃ (θ + π), and since the tangent of � at x is normal to
x − c(x), we have

〈
γ̃ ′(θ) | (cos θ, sin θ)

〉 = 〈
G′(θ) | (cos θ, sin θ)

〉 = 0,

which implies G′(θ) = r(θ)(− sin θ, cos θ) for some continuous r . (Recall that r gives
the coordinate on the stick of the point of instant rotation.)

Now, since � has property C4(1/
√

2), there is a unique square S(θ) with edges of length
1√
2

inscribed in � at γ̃ (θ). Since γ̃ (θ + π) is the unique point of � at distance 1 from

γ̃ (θ), γ̃ (θ + π) is the vertex of S(θ) diagonal to γ̃ (θ) (S(θ) has diagonal 1). Thus, G(θ)
is also the center of S(θ), which implies G(θ + π/2) = G(θ) (see Fig. 7, on the right).
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Fig. 7

Therefore, G′(θ + π/2) = G′(θ), i.e. r(θ + π/2)(cos θ, sin θ) = r(θ)(− sin θ, cos θ), so
r(θ) = 0, G(θ) is constant, and hence � is a circle. �

The end of the proof can also be seen as follows. Since we rotate a square, the needle must
stay on the first diagonal of the square on the first half of the trajectory in order to have
C(1). But on the second half it must stay on the second diagonal, and thus it must stay in
the center and the curve is a circle.

This proof can be easily generalized to show that if a C2 regular closed simple curve has
both properties C2n(D) and C(R), with R two times the radius of the regular 2n-gon with
edges of length D, then it is the circle. This however leaves open the following:

Questions. Are there D, D̃ > 0 and curves other than the circle which have property
C(D) and Cn(D̃) for some n ≥ 3?
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We finish with the following proposition, which gives a motivation for the “!” in the defi-
nition of C(D):

Proposition 2. Let � be a continuous closed piecewise regular curve satisfying C(D).
Then, � is regular.

The proof is an exercise for the interested reader. (Hint: Show that c(x) is continuous in x ,
then that � cannot have corners.) Notice that taking b = 0 in the first figure of this paper
yields a curve of constant diameter with corners (the well known Reuleaux triangle).
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Sér. 3, 19 (1902), 357–408.
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