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1 Introduction

For our purposes, we can begin by saying that a combinatorial design is a binary matrix on
which we have imposed some conditions; this is a simple and easy way to introduce this
concept. The mathematical study of these designs was promoted by problems in the design
and analysis of experiments in statistics, especially since the 1930s. For the mathematical
aspects, two classic references are the books by Hall [2] and by Ryser [8]; as examples
of more recent references, we have the books by Ionin and Shrikhande [3], and by Van
Lint and Wilson [4]. For the statistical aspects, a classic reference is the book by Box,
Hunter, and Hunter [1]. Binary matrices and vectors are of interest in combinatorics, in
the theories of coding and of information, and in cryptology; some applications and several
mathematical results are discussed in [7].

The central problems are the existence and the construction of such designs. In general,
these problems remain unsolved, but there are partial results [2, 3, 4, 8].

Also important are problems concerned with minimal or maximal properties of combina-
torial designs. A classic example is Fisher’s inequality [2, p. 129]. More recently, Marrero
[5] obtained a maximal property for binary nonsingular matrices in which each row has the
same number of ones. Also, Marrero and Pasles [6] have found the best possible bounds

Block-Designs sind mathematisch dquivalent zu gewissen bindren Matrizen. Die damit
verbundenen Fragen konnen daher leicht verstidndlich gemacht werden. Die Haupt-
probleme bestehen im Nachweis der Existenz und Eindeutigkeit solcher Designs; in
voller Allgemeinheit sind beide Probleme allerdings nach wie vor ungeldst. In der vor-
liegenden Arbeit werden einige neue Ergebnisse zur Existenz einer Klasse von Block-
Designs fiir den Fall bewiesen, dass die Block-Anzahl nahe dem minimal moglichen
Wert ist. Die Beweise sind einfach, im Detail ausgefiihrt und leicht nachvollziehbar.




Block designs with near-minimal number of blocks 147

for the number of coincidences of ones between two distinct rows of a nonsingular binary
matrix of constant row sum.

In this paper we consider two well-known combinatorial designs that are defined next.
Let S = {x,..., xy} be a finite set. A collection X1, ..., X}, of subsets of S is called a
(b, v, r, k, A)-design if:

e |Xij|=kforeachi=1,...,b;

e for each j = 1,...,v, the element x; is contained in exactly r of the subsets
X1,..., Xp;

o for each pair of distinct i, j = 1, ..., v, the elements x;, x; appear together in A of
the subsets X1, ..., Xp; and

e 0<XA,0<r,and0 <k <.

The choice of b and v as symbols for two of the parameters is related to the use of these
designs in agricultural experiments, where it is desired to compare v varieties of a crop
using b blocks. In general, the varieties are compared with respect to several types of ob-
servations or responses. Statistically, the “blocks” correspond to a factor (explanatory or
independent variable) which is not of primary interest, but which is known — or believed
— to have an appreciable effect on the responses to be measured. The blocks factor is
generally a natural one, such as: locations in an agricultural experimental field, hospitals
where a clinical trial is going to be held, manufacturing plants that make the same kind of
object, etc. In statistics, this design is known as a balanced incomplete block design. “In-
complete” refers to the fact that not every variety appears in each block; this is necessary
sometimes, as would happen, for example, when the agricultural field is not large enough
to plant all varieties in every block. “Balanced” refers to two facts:

(1) each block contains the same number k of varieties, and

(2) each pair of distinct varieties appear together in the same number A of blocks.

Necessary conditions for the existence of a (b, v, r, k, A)-design are that bk = vr and
r(k—1)=x(w—1)[8, p.97].
The subsets X1, ..., Xy of {x1,...,x,} are called a (v, k, A)-design if:

e |Xij|=kforeachi=1,...,v;

e |X; N X ;| = A for each pair of distinct i, j =1, ..., v; and

e 0<A<k<n.

In statistics, this design is known as a symmetric balanced incomplete block design. “Sym-
metric” refers to the fact that the number of varieties is the same as the number of blocks.

In these two definitions, the last statement concerning conditions on the parameters b, v,
r, k, and A is there to avoid cases that are generally considered uninteresting. In general,
such designs are known as block designs, and the blocks correspond to the subsets.

The incidence matrix of a design is the binary matrix A := (ai j) defined by
1, ifx; € X;,
ajj = .
0, otherwise.

A design is completely determined by its incidence matrix; that is why we began by saying
that a combinatorial design is a certain binary matrix. In fact, if A7 is the transpose of the
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matrix A, I, is the m x m identity matrix, and J,, , is the m x n matrix having all its
elements equal to 1, then

e a (b, v, r, k, A)-design exists if and only if there exists a b x v binary matrix A such
that ATA = (r — A1, + AJyp and AJy 1 = kJp 1; and

e a (v, k, A)-design exists if and only if there exists a v x v binary matrix A such that
AAT = (k — A1, + AJy . It is not obvious, but it can be shown [8, Theorem 2.1,
p. 103] that if A is the incidence matrix of a (v, k, A)-design, then AAT = AT A.
This means that, in A, the column sums and the row sums are all equal to k; and the
pairwise inner product of distinct column vectors and of distinct row vectors are all
equal to 1. These properties are used in the proof of Theorem 5 below.

The diagram
XI xz e xv
X1 k
X2 k
0,1
Xp k
r r S r
NS
A
helps to visualize the way in which the defining properties of a (b, v, r, k, 1)-design
manifest themselves in the corresponding incidence matrix. The symbols x1, x2, ..., Xy
at the top indicate that the columns correspond to the elements of the set {x1,...,x,};
the symbols X1, X», ..., X, on the left show that the subsets X1, ..., Xp of {x1, ..., xp}
correspond to the rows; the 0, 1 inside indicate that the matrix is binary; the k, k, ..., k
on the right say that each row sum is equal to k, that is, each row has k ones in it; the
r,7,...,r at the bottom say that each column sum is equal to r, that is, each column has

r ones in it; finally, the symbols

\)L/ at the bottom are intended to mean that each pair of

distinct columns have A ones in common, that is, the inner product of each pair of distinct
column vectors is equal to A.

Likewise, the diagram

xl x2 e xv
X1 k
X k
: 0,1 : >,\
Xy k
k k k
N
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provides a way to visualize the principal properties of a (v, k, A)-design through its inci-
dence matrix.

According to Fisher’s inequality [2, p. 129], the minimal value for the parameter b of a
(b, v, r, k, A)-design is b = v; that is, a (b, v, r, k, A)-design exists only if v < b. It has
been known for a long time that a (b, v, r, k, 1)-design with b = v exists if and only if
there exists a (v, k, 1)-design. In this paper we determine the existence of (b, v, r, k, X)-
designs when b = v + 1 and when b = v + 2. For the case b = v + 3, we present new
necessary conditions for the existence of a (b, v, r, k, A)-design. Using a (v, k, 1)-design,
and in a simple manner, we construct an infinite family of (b*, v*, r*, k*, A*)-designs.
Moreover, we prove the nonexistence of an infinite family of (b, v, r, k, A)-designs; the
case b = v + 1 belongs to this family.

2 (b,v,r,k,))-designs when b € {v,v+1,v+2,v+ 3}

Ifa (b, v, r, k, 1)-design exists and the number b of blocks is equal to the smallest possible
value v, then r = k and this design is in fact a (v, k, 1)-design. Thus, we can consider the
(v, k, A)-designs as particular cases of the (b, v, r, k, 1)-designs. To prove this, one can
use a result [8, Theorem 2.1, p. 103] that says: if A is the incidence matrix of a (v, k, A)-
design, then AAT = AT A. Even though it has been known for a long time, this result is
stated in the next theorem so as to make this paper more complete.

Theorem 1. A (b, v, r, k, A)-design with b = v exists if and only if there exists a (v, k, A)-
design.

Theorem 2. Ifb =v + 1, then a (b, v, r, k, L)-design does not exist.

Proof. Taking m = 1 in Theorem 6 below, one obtains this result as a corollary. (]

Theorem 3. A (b, v, r, k, A)-design with b = v + 2 exists if and only if v = 2 or v = 4.
Moreover, given a (b, v, r, k, L)-design with b = v + 2, then, in terms of the parameter
v, the other parameters must be as follows: r = (v + 2)/2, k = v/2, and » = (vV* —

4/{4w - D}

Proof. The proof is divided into two parts.

Part 1: To prove that if b = v+ 2 and a (b, v, r, k, A)-design exists, then we must have
v = 2 or v = 4; moreover, the values of the other parameters must be as in the statement
of the theorem.

Suppose there exists a (b, v, r, k, A)-design with b = v+2, and, to begin with, suppose also
that v is odd; thus, v = 2n + 1 for some positive integer n. Then the condition bk = vr
implies r = (v 4+ 2)k/v. Because r is a positive integer, it follows that (v + 2)k = 0
(mod v); and because v = 2n+ 1, we have 2k = 0 (mod 2n+1), sothat k = 0 (mod v),
which contradicts 0 < k < v. Therefore, a (b, v, r, k, A)-design with b = v + 2 and v odd
cannot exist.

For the remainder of Part I of the proof, suppose thata (b, v, r, k, 1)-design withb = v+2
exists; then the integer v must be even.
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In this case, as shown above when v is odd, we must have 2k = 0 (mod v). Thus, it
follows that 2k € {0, £v, &2v, +3v, ...}. But, from the condition 0 < k < v, there is
just one possible value for 2k, namely, 2k = v, so that k = v/2. Moreover, the condition
bk = vr gives (v + 2)(v/2) = vr, from which we get

r=@w+2)/2.

With respect to the parameter A, we use the condition r(k — 1) = A(v — 1), which becomes
first {(v +2) /2}(v/2 —1)=A(v—1),andthen A = (v —2)(v + 2)/{4 v — 1)}, or, in
terms of the parameter k,

A=k —-1Dk+1)/2k—1).

We use this last equation to find the possible values for &, and thus for v = 2k. The param-
eter A is a nonnegative integer; therefore, we must have (k — 1)(k+ 1) =0 (mod 2k — 1),
or, equivalently,

k*=1 (mod2k—1).

But, also, since 4k2 = (2k — D2k + 1) + 1, we always have
kK> =471 (mod 2k — 1),
since 4 and 2k — 1 are relatively prime. Therefore,
1=4 (mod 2k — 1),

which forces k = 1 or kK = 2. Thus, since we must have v = 2k, we see thatif b = v + 2
and a (b, v, r, k, A)-design exists, then we must have v = 2 or v = 4. This concludes Part I
of the proof.

Part 11: To prove that if v = 2 or v = 4, then there exist (b, v, r, k, A)-designs with
b=v+2r=w+2)/2k=v/2 and r = (v* —4)/{4v — D}.

The proof is accomplished by exhibiting the pertinent incidence matrices. When v = 2,
an example of the desired incidence matrix is given by

1 0

1 0

o 1|’

0 1

and when v = 4, an example is given by

1 1 0 0
1 01 0
1 0 0 1
01 1 0
01 0 1
0O 0 1 1

This concludes Part II of the proof.

Therefore, a (b, v, 1, k, X)-design with b = v + 2 exists if and only if v = 2 or v = 4.
Moreover, the parameter values must be as in the statement of the theorem. O
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Theorem 4. Ifb = v + 3 and a (b, v, r, k, A)-design exists, then there must exist positive
integers m and t such that

v=3t, r=m@+1), k=mt, and A =m(t + 1)(mt —1)/(3t — 1).

Proof. LetN := {0, 1,2,3,...}, and suppose a (b, v, r, k, A)-design exists. For the pa-
rameter v, there are three cases to consider: v = 3t + 1, or v = 3t 4+ 2, or v = 3¢, for some
t e N.

If b = v + 3, then the condition bk = vr implies (v 4+ 3)k = vr, so that

v+3
v

k,

r =

which must be a positive integer.

Case 1: Suppose v = 3t + 1 for some t € N.

In this case we must have

3 3
Pt ek
v 3r+1
Thus,
k=r—k
3t+1

must be an integer. Therefore, since ged{3, 3¢ + 1} = 1, it follows that (3¢ 4 1)|k and
k =0 (mod 3¢ + 1). Thus, since k > 0, we must have k > 3¢t + 1 = v, a contradiction.

Therefore, it is not possible to have v = 3¢ + 1 for some ¢ € N.
Case 2: Suppose v = 3t + 2 for some t € N.

This case is not possible either, by an argument similar to that in Case 1; we omit the
details.

Case 3: Suppose v = 3t for some t € N.
Since v > 0, it follows that ¢ > 0. In this case we must have

t+1
l)+3k:L
v t

ka

a positive integer. Therefore, since gcd{r, t+1} = 1, it follows thatt|k and k = 0 (mod ¢).
Thus, since k > 0, there must exist a positive integer m such that k = m¢.

For the parameter r, we have

s

r—Tkzm(t—i—l),

and for the parameter A we have

Lo k=1 _m+ Do~ 1) -
v—1 3r—1
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The preceding result suggested a simple construction for a family of (b, v, r, k, 1)-designs.
This construction is given in the next theorem, which shows one way to construct
(b, v, 1, k, 1)-designs in terms of (v, k, A)-designs. We considered b* = nv, instead of
v* = nv, for some integer n > 1 because, by Fisher’s inequality [2, p. 129], b* > v*
is a necessary condition for the existence of a (b*, v*, r*, k*, A*)-design. Although it is
simple, this construction appears to be new.

Theorem 5. If a (v, k, A)-design exists, then, for each integer n > 1, there exists a

(b*, v*, r*, k*, A*)-design with parameters b* = nv, v* = v, r* nk, k* = k, and
A =nA.

Proof. Suppose a (v, k, A)-design exists, and let A be its incidence matrix. Then [8, The-
orem 2.1, p. 103]

ATA= (k- +AJyy, Ady1=kJy1, and Ji,A=kJ,.

For each integer n > 1, we use n copies of A to define the nv x v binary matrix B by

*

Then B is the incidence matrix of a (b*, v*, r*, k*, A*)-design with the desired parameters.

O

3 A general nonexistence result

Theorem 6. Let m > 1 be an integer such that gcd{m,v} = 1. If b = v + m, then a
(b, v, r, k, L)-design does not exist.

Proof. Suppose m > 1 1is an integer relatively prime to v. If b = v+m and a (b, v, r, k, A)-
design exists, then the parameters must satisfy the condition (v+m)k = vr. Thus, because
r is a positive integer, it follows that
(w+m)k=0 (mod v).
Moreover, since gcd{m, v} = 1, we now have
k=0 (mod v),
which contradicts the requirement that 0 < k < v. Therefore, a (b, v, r, k, A)-design with

b = v + m and gcd{m, v} = 1 cannot exist. O
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