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Another generalisation of Napoleon’s theorem

G.C. Shephard

G.C. Shephard was awarded a doctorate at Cambridge University in 1951. He held po-
sitions at the University of Birmingham and the University of East Anglia (Norwich),
from which he retired as Professor Emeritus in 1987. G.C. Shephard is an expert in
convexity theory, polytopes, tessellations, and the theory of patterns.

Since its discovery over 150 years ago, Napoleon’s theorem has fascinated mathemati-
cians, both professional and amateur alike. At least 150 papers have been published giv-
ing proofs, generalisations, variants and history of the theorem. Here we state and prove
another generalisation.

First let us remind ourselves of the original (classical) theorem. Starting from any triangle,
adjoin to each of its edges an equilateral triangle. By this we mean construct three equi-
lateral triangles each of which has an edge in common with the original triangle. Clearly
there are two ways to adjoin an equilateral triangle: either outwardly (in which the centres
of the original triangle and the equilateral triangle lie on opposite sides of their common
edge) or inwardly if the centres lie on the same side of the edge. Napoleon’s theorem
states that if all the equilateral triangles are adjoined outwardly (Fig. 1(a)), or inwardly
(Fig. 1(b)), then their centres are vertices of another equilateral triangle (a Napoleon tri-
angle). Most people find this result extremely surprising. It seems that the symmetries of
the Napoleon triangles have “mysteriously” appeared from nowhere!

.

Der klassische Satz von Napoleon, der erst seit 1911 diesen Namen trägt, dürfte den
meisten Lesern bekannt sein: Konstruiert man über den Seiten eines beliebigen Drei-
ecks jeweils gleichseitige Dreiecke und verbindet deren Mittelpunkte, so erhält man
wieder ein gleichseitiges Dreieck. Es gibt eine Vielzahl von Beweisen und Verallge-
meinerungen für diesen Satz. In der vorliegenden Arbeit wird folgende neue Verallge-
meinerung vorgestellt: Es seien p, q > 0 natürliche Zahlen und n ein Teiler von 2p+q
mit n > p, q . Dann bilden die beiden Mittelpunkte zweier sogenannter (n/p)-Gone
über zwei Dreiecksseiten und der Mittelpunkt eines (n/q)-Gons über der dritten Drei-
ecksseite drei aufeinanderfolgende Ecken eines (n/p)-Gons. Der Satz von Napoleon
ist durch die Spezialfälle p = q = 1 oder 2 gegeben.
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The new generalisation is as follows. Instead of adjoining equilateral triangles to the edges
of an arbitrary triangle, we adjoin other regular polygons. Under certain conditions, given
explicitly in the theorem, the centres of the adjoined polygons are vertices of another regu-
lar polygon. For example, if we adjoin two regular hexagons outwardly, and an equilateral
triangle inwardly to the edges of an arbitrary triangle [A1, A2, A3] (see Fig. 3) then the
centres B1, B2, B3 of these three polygons are consecutive vertices of a regular hexagon.

In the following we need to extend our definition of regularity to include regular star-
polygons. Given mutually prime integers n ≥ 3 and 0 < p < n define a regular (n/p)-
gon as a circuit (in general self-intersecting) whose n vertices are arranged equidistantly
around a circle C , and whose edges subtend angles 2πp/n at the centre of C . Notice that
the edges will, in general, intersect in points other that the vertices. A familiar example of
a star-polygon is the pentagram which is a regular (5/2)-gon. A regular (n/1)-gon is the
same as a regular n-gon. We note that the (internal) angle between two consecutive edges
of a regular (n/p)-gon at their common vertex is π(1 − 2 p/n) and the external angle is
π(1 + 2 p/n).

The centre of a regular (n/p)-gon adjoined to the edge S of a triangle T is the apex B of an
isosceles triangle whose base is the edge S. Conventionally we assume that if p/n < 1/2,
the point B and the triangle T lie on opposite sides of S, and if p/n > 1/2, so that the
angle 2πp/n is reflex, then B and T lie on the same side of S (see Fig. 7 where the angles
θ < π are subtended at B1 and B3 by the edges [A2, A3], [A1, A2] of the triangle, and
φ > π is the external angle at B2 of the triangle [A1, B2, A3]). If p/n = 1/2 the polygon
degenerates to a line segment which coincides with S. In this case, B is the midpoint of S.

Theorem. Let T be any triangle [A1, A2, A3] and p, q be positive integers. Let n be any
factor of 2 p + q where n > p and n > q. Let B1, B3 be the centres of regular (n/p)-gons
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adjoined to the edges [A2, A3], [A1, A2] of T , and B2 be the centre of a regular (n/q)-gon
adjoined to the third edge [A1, A3]. Then B1, B2, B3 are three consecutive vertices of a
regular (n/p)-gon. In each case, if n and p or n and q have a common factor, we reduce
n/p and n/q to its lowest terms.

Notice that the conditions of the theorem imply that (2 p + q)/n = 1 or 2. In the diagrams
illustrating the following examples, the original triangle [A1, A2, A3] is drawn in bold lines
and the regular polygon whose existence is asserted by the theorem is shown in semi-bold
lines.

Examples.
1. p = q = 1 and n = 3. Here we adjoin equilateral triangles outwardly to the edges

of T , and then their centres are the vertices of an equilateral triangle.

2. p = q = 2 and n = 3. Here we adjoin the equilateral triangles inwardly, and their
centres are the vertices of an equilateral triangle.

Examples 1 and 2, shown in Fig. 1(a) and (b), comprise the classical Napoleon’s theorem.

3. p = 1, q = 2 and n = 4. Two regular (4/1)-gons (squares) are adjoined outwardly
to edges of T and the centre of the (4/2)-gon (= (2/1)-gon) is the midpoint of the
third side. The centres of these three polygons are vertices of a square, see Fig. 2.
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4. p = 1, q = 4 and n = 6. The (6/1)-gons are regular hexagons adjoined outwardly
and the (6/4)-gon (= (3/2)-gon) is an equilateral triangle adjoined inwardly. The
centres of these three polygons are vertices of a regular hexagon, see Fig. 3.

5. p = 1, q = 6 and n = 8. Here (8/1)-gons (regular octagons) are adjoined outwardly
and a (8/6)-gon (= (4/3)-gon) is a square adjoined inwardly. The centres of these
three polygons are vertices of a regular octagon, see Fig. 4.

Examples 3, 4 and 5 are the beginning of an infinite sequence of results: for any positive
integer m, the centres of regular 2m-gons adjoined outwardly to two edges of T , and
a regular m-gon adjoined inwardly to the third edge of T , are consecutive vertices of a
regular 2m-gon. This case arises by taking p = 1, q = 2(m − 1) and n = 2m in the
theorem.
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6. p = 2, q = 1 and n = 5. Two regular pentagrams ((5/2)-gons) are adjoined to
edges of T and a regular pentagon ((5/1)-gon) is adjoined to the third edge. In this
case all the polygons are adjoined outwardly. The centres of the adjoined polygons
are three consecutive vertices of a regular pentagram, see Fig. 5.
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7. p = 5, q = 2 and n = 6. Two regular (6/5)-gons (hexagons) are adjoined inwardly
to the edges [A1, A2], [A1, A3] of T and a regular (6/2)-gon (= (3/1)-gon or equi-
lateral triangle) is adjoined outwardly to the third edge of T . The centres of the
adjoined polygons are three consecutive vertices of a regular hexagon (see Fig. 6).
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Proof of the theorem. Let [B1, A3, A2], [B2, A1, A3], [B3, A2, A1] be isosceles triangles
adjoined to the edges of T with apex angles θ and φ, as shown in Fig. 7, and suppose
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2θ + φ is a multiple of 2π . Write r1 for rotation through angle θ about B1, r2 for rotation
through angle φ about B2, and r3 for rotation through angle θ about B3. Then the product
r1r2r3 is a rotation through angle 2θ + φ which is a multiple of 2π and so is a translation.
But r3(A2) = A1, r2(A1) = A3 and r1(A3) = A2. So A2 is an invariant point. The only
translation with an invariant point is the identity i , so r1r2r3 = i .

Now suppose r1(B2) is some point which we shall call X . Consider r3(X). Since
r−1

3 = r1r2 and r2(B2) = B2, r1(B2) = X we deduce r−1
3 (B2) = X and so r3(X) = B2.

The isosceles triangles [B3, X, B2] and [B2, X, B1] have the same angles (at B1 and B3)
and a common base [X, B2]. They are therefore congruent and R = [X, B1, B2, B3] is a
rhomb. Its edges are equal, and, in particular |B3 B2| = |B2 B1|. If θ < π , then the interior
angles of R at B1 and B3 are each equal to θ and therefore the interior angle of R at B2 is
π − θ . If θ > π the exterior angles of R at B1 and B3 are each equal to θ and therefore the
interior angles at these vertices are equal to 2π − θ , and the interior angle at B2 is θ − π .
Notice that the proof is valid whenever 2 p + q is a multiple of 2π , that is if (2 p + q)/n
is either 1 or 2. In the following we need to distinguish between these two cases.

Put θ = 2πp/n, φ = 2πq/n and consider the angle between the line segments [B3, B2]
and [B2, B1] at B2. If (2 p + q)/n = 1, then θ < π so this angle is π − θ = π(1 − 2 p/n)

which is the interior angle at a vertex of an (n/p)-gon. If (2 p + q)/n = 2, so θ > π ,
this angle is θ − π = π(2 p/n − 1) which is also the interior angle of an (n/p)-gon. In
either case, B1, B2, B3 are three consecutive vertices of a regular (n/p)-gon. This proves
the theorem. �



Another generalisation of Napoleon’s theorem 143

The triangle [B1, B2, B3] will be called the Napoleon triangle for the given configuration.
We observe that, since the interior angle of the triangle [B1, B2, B3] at B2 is π − θ if
(2 p + q)/n = 1, and θ − π if (2 p + q)/n = 2, in the former case, the Napoleon triangle
[B1, B2, B3] has the same orientation as the triangle T = [A1, A2, A3] and in the latter
case, it has the opposite orientation.

Corollary 1 If three regular polygons satisfy the conditions of the theorem (so that their
centres are vertices of a regular (n/p)-gon), then the configuration that arises by adjoining
the same polygons inwardly (instead of outwardly) or outwardly (instead of inwardly) to
the edges of a triangle, also has centres which are vertices of a regular (n/p)-gon.

To prove this we apply the theorem to p′, q ′ and n, where p′ = n − p and q ′ = n − q .
The new configuration will be said to be conjugate to the original configuration. Note that
if (2 p + q)/n = 1, then for the conjugate configuration, (2 p′ + q ′)/n = 2. In Fig. 6
we show the configuration conjugate to that in Fig. 3, and the two configurations of Fig. 1
are conjugate to each other. Since the Napoleon triangles of a configuration and of its
conjugate configuration are parts of an (n/p)-gon, we deduce they are similar, though
oppositely oriented.

Given p, q as in the theorem, since the (n/q)-gon can be adjoined to any of the three edges
of the triangle [A1, A2, A3], it follows that there are three conjugate pairs of Napoleon
triangles. Hence, in all, there are six Napoleon triangles associated with the integers p, q
and the given triangle.
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Corollary 2 These six Napoleon triangles are in perspective from the orthocentre of the
original triangle [A1, A2, A3].

This follows immediately from the fact that the centres of regular polygons adjoined to
an edge necessarily lie on the perpendicular bisector of that edge. And these perpendic-
ular bisectors meet at the orthocentre of [A1, A2, A3]. In Fig. 8 we show two conjugate
Napoleon triangles in perspective from H , the orthocentre of [A1, A2, A3]. To show all
six triangles would make the diagram too complicated to be intelligible.

Corollary 2 is well-known in the classical case, but note that, unlike the classical case, the
original triangle [A1, A2, A3] is not, in general, in perspective with either of the Napoleon
triangles.

Corollary 3 If three polygons (two (n/p)-gons and an (n/q)-gon) satisfy the conditions
of the theorem, then there exists a point Y through which pass the circumcircles of these
three polygons.

Again, this result is well-known for the classical Napoleon theorem. For the more gen-
eral case, let m1, m2, m3 be reflections in the edges B2 B3, B3 B1, B1 B2 of the triangle
[B1, B2, B3], see Fig. 9.

Remembering that the product of reflections in two lines which intersect at angle θ is
a rotation through angle 2θ , we see that, in the notation of the theorem, r1 = m2m3,
r2 = m3m1 and r3 = m1m2. Now A2 = r1(A3) = m2m3(A3) = A2 and so m3(A3) =
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m−1
2 (A2) = m2(A2). Similarly for m1(A1), and we may put

m1(A1) = m2(A2) = m3(A3) = Y

where Y is some point. The fact that A1 reflects into Y and that the line of reflection m1
passes through B3 shows that the circle through A1 with centre B3 also passes through Y .
This circle is the circumcircle of the polygon centred at B3. In an exactly similar way the
circumcircles of the other two polygons with centres at B1 and B2 also pass through Y ,
and the corollary is proved. In Fig. 8 we have indicated the circumcircles and the point Y
for the configuration of Fig. 6.

The results of this paper may be regarded as an extension of, and geometrical interpretation
of, Schütte’s theorem [3], [4]. Our proof is based on that of Stachel [5]. In [1], “dynamic
proofs”, that is, proofs using rotations and reflections, are used to establish several other
results related to the classical Napoleon’s theorem.

Acknowledgement. I am indebted to Dr. Shaun Stevens for comments on an early version
of this paper.
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