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A dynamic proof of Thébault’s theorem

A. Ostermann and G. Wanner

Both authors have studied in Innsbruck and are experts in the numerical solution of
differential equations. The present article is a fruit of the joint elaboration of the book
project Geometry by Its History.

“This computer proof took some 44 hours of CPU on a symbolic 3600 machine (. . . ). The theorem
almost has the status of a benchmark problem in Groebner theory.” (R. Shail [3])

Thébault’s theorem, discovered in 1938 (see [5]), has the remarkable property that it re-
quired three decades to obtain a first proof, which then took 24 pages of calculations.
Subsequent shorter proofs, but not easy ones, were published mainly in Elemente der
Mathematik ([4] and [6]) and in Dutch language. We refer to [1], [2], and [7] for com-
plete accounts of all these and recent proofs. In this note we want to emphasize the role
of a certain parabola which comes out of a dynamic machine, and which allows an easy
understanding.

1 The TTT-machine1

We start with a “machine” defined as follows (see Fig. (a)): Choose two fixed points C and
I in the plane and let the line C D rotate around C, where D moves on the x-axis. Let our

.

Für den schönen Satz von Thébault über den In- und Umkreis eines Dreiecks, welcher
in den Dreissigerjahren des letzten Jahrhunderts als Problem gestellt wurde und drei
Jahrzehnte ohne Beweis blieb, gibt es inzwischen etliche Beweise, welche in der Regel
auf analytischen Rechnungen beruhen, die sich über einige Seiten erstrecken. Zwei
etwas kürzere Beweise und weitere Untersuchungen zu diesem Gegenstand führten
seit 1986 zu vier Publikationen in den Elementen der Mathematik. Die Motivation der
Autoren zu dem vorliegenden, weiteren Beweis des Thébaultschen Theorems besteht
darin, die Aussage dieses Satzes

”
auf einen Blick“ zu erkennen. Dieses Ziel erreichen

sie durch Anwendung von Sätzen des Apollonius und der Verwendung einer Parabel,
die durch eine sogenannte

”
TTT-Maschine“ (die drei T’s stehen für Thébault, Turnwald

und Tinguely) erzeugt wird.
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machine then produce the two angle bisectors at D (which are mutually orthogonal) and
project the point I orthogonally to these bisectors onto the x-axis, producing the abscissas
x and x ′, respectively. Then the corresponding points P and P ′ on the bisectors move on
one and the same parabola with vertical axis.

Proof. We denote the coordinates of I by (xI , yI ), and those of C by (xC , yC). Taking the
slope of DP , p = tan θ , as parameter, we have, because of tan 2θ = 2p

1−p2 , the expression

xD = xC + yC
p2 − 1

2 p
= xC + yC

2

(
p − 1

p

)

for the abscissa of D. We further have by construction

(I) x = xI + p yI , y = p (x − xD) ,

(II) x ′ = xI − 1

p
yI , y ′ = − 1

p
(x ′ − xD) .

We next insert the formula for xD into (I) to obtain

y = px − pxD = px − pxC − yC

2
(p2 − 1) .

Elimination of p with p = x−xI
yI

then leads to a quadratic expression for y in x . Interchang-

ing p and − 1
p leaves xD invariant and turns equations (I) into equations (II). Therefore,

we obtain precisely the same quadratic expression for y ′ and x ′. �

1The first T stands for Thébault, the second for Turnwald, whose corrected version of a formula of Thébault
was the main motivation for this machine, the third T stands for Jean Tinguely and emphasizes the dynamic
thinking of our proof.
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2 The incircle
If yC > 2yI , our parabola is curved downwards and intersects the x-axis in two points A
and B . These points A and B are characterized by the property that I is the incenter of
the triangle ABC (see Fig. (b)). We see this, if we let the point D move towards B , say.
The point P ′, and hence also the point I , then lie on the angle bisector of the angle ABC
(and similarly for the other side).
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3 The enveloping circle
We now consider the family of circles centered at points P on the parabola and tangent to
the x-axis, i.e., of radius P Q = PU = y (see Fig. (c)). The enveloping curve of these
circles is a circle centered in S, the focus of the parabola. This is the reciprocal result of
the fact that the points, which have the same distance from a straight line and a circle, lie
on a parabola. Indeed, since by the characterization of the parabola, S P = PV , we have
that SQ = U V = Const. So each of these circles touches the enveloping circle in the
corresponding point Q, which is positioned in the prolongation of S P .

4 The circumcircle
As, by construction, the points P and P ′ lie on the angle bisectors of C D with the x-axis,
and, at the same time, have the same distances from the x-axis and the enveloping circle
of Fig. (c), the circles centered at P and P ′ with radius y are

– tangent to the x-axis;

– tangent to C D;

– and tangent to the enveloping circle of Fig. (c)

(see Fig. (d)). We now continue to turn our machine until the tangent C D, which rotates
around C , becomes orthogonal to C S (see Fig. (e)). In this case, the circle centered in P
can only touch the line C D in the point Q = C and the enveloping circle must therefore
pass through C . Since it also passes through A and B (here all distances are equal to 0),
we conclude that this circle is identical with the circumcircle of the triangle ABC .
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5 Thébault’s theorem: The points P , I , and P ′ are aligned.

Proof. By taking appropriate linear combinations of (I) and (II) we obtain

1

p
x + p x ′ =

( 1

p
+ p

)
xI ,

1

p
y + p y ′ = x − x ′ =

( 1

p
+ p

)
yI

from which the result follows at once. �

More precisely, the proof shows that the point I intersects2 the segment P P ′ in the ratio
p : 1

p . We can also say that I is the center of gravity for the masses 1
p and p attached to P

and P ′, respectively.

6 The h/2-circle

We add two nice particular cases of the above theorems, firstly: If the incenter of a tri-
angle is moved upwards to half of the altitude, and the radius of the incircle is increased
accordingly, then the resulting circle is tangent to the circumcircle.

Proof. We see this result by letting p → 0; in this case D tends to −∞ and the angle
bisector tends to the horizontal line of altitude yC/2 (see Fig. (f)). The projection I �→ P
becomes vertical. �

7 The biggest chocolate egg in a bag

We answer the following question: If an angle B AC at the periphery of a circle cuts from
this circle a triangular shaped region (see Fig. (g)), we ask for the largest circle which fits
into this set.

2 This observation has first been made by G. Turnwald [6] in the form y cos2 θ + y′ sin2 θ = yI , correcting a
wrong assertion of V. Thébault. This formula was the starting motivation for our “machine”.
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Solution: We obtain the answer by turning our machine such that D coincides with A.
One has to project the incenter I of the triangle ABC orthogonally to AI onto the side
AB , and then orthogonally to AB back to the angle bisector, which gives the center P of
the required circle (see Fig. (h)).
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[1] Ayme, J.-L.: Sawayama and Thébault’s theorem. Forum Geometricorum 3 (2003), 225–229.

[2] Kulanin, E.D.; Faynshteyn, O.: Victor Michel Jean-Marie Thébault zum 125. Geburtstag am 6. März
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[3] Shail, R.: A proof of Thébault’s theorem. Amer. Math. Monthly 108 (2001), 319–325.
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