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The Gaussian function e−x2
plays a fundamental role in probability and statistics. For this

reason, it is important to know the value of the integral

I =
∞∫

0

e−x2
dx .

Since the integrand does not have an elementary antiderivative, I cannot be evaluated
directly by the fundamental theorem of calculus. The familiar computation of the Gaussian
integral is via the following remarkable trick, attributed to Poisson. One forms the square
of I , interprets it as a double integral in the plane, transforms to polar coordinates and the
answer magically pops out. The calculation is as follows

I 2 =
∞∫

0

∞∫

0

e−(x2+y2)dxdy =
π/2∫

0

∞∫

0

re−r2
drdθ = π

2

∞∫

0

re−r2
dr = π/4.

Hence I = √
π/2.

.

Den meisten Leserinnen und Lesern unserer Zeitschrift dürfte die vermutlich auf
Poisson zurückgehende Methode zur Berechnung des Integrals I über die Gaußsche
Fehlerfunktion exp(−x2) entlang der reellen Zahlengeraden bekannt sein: Man bildet
dazu das Flächenintegral I 2 und führt Polarkoordinaten ein; das fragliche Integral lässt
sich nun elementar berechnen. In dem vorliegenden Beitrag ermittelt der Autor alle
auf R stetigen und integrierbaren Funktionen f , für welche das Integral

∫
R

f (x) dx
mit dieser Methode berechnet werden kann. Es stellt sich heraus, dass dies bis
auf Skalierung die Funktionen der Form f (x) = x p exp(cx2) mit p > −1 und c < 0
sind.
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In this article we explore the question: can Poisson’s method be used to compute other
seemingly intractable integrals? To this end, consider the improper integral

J =
∞∫

0

f (x)dx .

If f satisfies the functional equation

f (x) f (y) = g(x2 + y2)h(y/x), x, y > 0 (1)

then Poisson’s argument applied to the function f yields

J 2 = 1

2

( ∞∫

0

g(x)dx
)( π/2∫

0

h(tan θ)dθ
)
.

The determination of J is thereby reduced to the evaluation of two, hopefully more ele-
mentary and solvable, integrals. This procedure raises the question:

Which functions f satisfy an equation of the form (1) where the functions g and h ◦ tan
admit elementary antiderivatives?

This problem was studied by the author in [3] where it was shown that the only continuous
solutions f to (1), assumed to be asymptotic to x p at zero, are those of the form f (x) =
ax pecx2

. R. Dawson [4] proved a similar result for the less general equation

f (x) f (y) = g(x2 + y2), x, y ≥ 0,

assuming only Riemann integrability of f . In the present article, we prove the following
generalization of these results.

Theorem. Suppose f : (0,∞) �→ R satisfies equation (1), f is non-zero on a set of
positive Lebesgue measure, and the discontinuity set of f is not dense in (0,∞). Then f
has the form

f (x) = Ax pecx2
(2)

where A, p and c are constants. Furthermore, the functions g and h are unique up to
scalar multiplication and are given by

g(x) = A1x pecx , (3)

h(x) = A2

( x

1 + x2

)p
(4)

where A1 A2 = A2.

Hence the only reasonable functions one might hope to integrate by Poisson’s method are
those of the form (2). Denoting

J =
∞∫

0

x pecx2
dx,
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the decomposition into (3) and (4) implied by the theorem results in the expression

J 2 = 1

2p+1

∞∫

0

x pecx dx ×
π/2∫

0

sinp t dt .

Now the existence of the first integral requires p > −1 and c < 0, while the evaluation
of both integrals in closed form requires that p be an integer. But in this case, the compu-
tation of J can be evaluated in terms of the Gaussian integral I by elementary techniques
(i.e., substitution and integration by parts)! We conclude that Poisson’s argument has no
wider applicability as an integration method. This answers the question posed in the title
of the article. As Dawson observes, it is curious that Poisson’s remarkable calculation
turns out to have essentially only one application and that this single application is such
a significant one.

The proof of the theorem differs substantially from the argument in [3] in focussing on the
function g in (1) rather than on h. The proof will require three preliminary results.

Lemma 1. Suppose f satisfies (1) and f is non-zero on a set of positive Lebesgue measure.
Then f never vanishes.

Proof . Note first that h(1) �= 0 otherwise taking y = x in (1) gives f ≡ 0, contradicting
the hypothesis. We suppose throughout, without loss of generality, that h(1) = 1. Setting
y = x in (1) gives

f 2(x) = g(2x2). (5)

Substituting for the function g in (1), we obtain

f (x) f (y) = f 2
(√

x2 + y2

2

)
h
( y

x

)
. (6)

Define
r(x) = f (

√
x), k(x) = h(

√
x).

Then (6) yields

r(x)r(tx) = r2
( x(1 + t)

2

)
k(t), t, x > 0. (7)

We now prove the claim: There exists δ > 0 such that k(x) �= 0 for all x in the interval
(1 − δ, 1 + δ). We argue by contradiction. Since the map x �→ x2 is strictly monotone
on (0,∞), the non-zero set of r has positive Lebesgue measure λ. Hence there exists an
integer N such that a := λ(T ) > 0 where T denotes the set

{x | r(x) �= 0} ∩ [N, N + 1].
Suppose the claim does not hold. Then there exists a sequence tn → 1 such that k(tn) = 0
for all n. Equation (7) yields

r(x)r(tnx) = 0, ∀n, ∀x . (8)
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Define
Tn := {tn x | x ∈ T }

and

V :=
∞⋂

n=1

∞⋃
k=n

Tk .

Then (8) implies Tn and T are disjoint, for all n. Hence

V ∩ T = ∅. (9)

Furthermore

λ(V ) = lim
n

λ
( ∞⋃

k=n

Tk

)
≥ lim

n
λ(Tn) = lim

n
tnλ(T ) = a. (10)

If x ∈ V , then there exists a subsequence {tnk } of {tn} and {xk} ⊂ T such that x = tnk xk

for all k. Since tnk → 1, this implies x ∈ T̄ , i.e. V ⊂ T̄ .

Let U be an arbitrary open set such that T ⊂ U . Then

T ∪ V ⊂ Ū . (11)

We conclude from (9)–(11) that

λ(U) = λ(Ū ) ≥ λ(T ∪ V ) = λ(T ) + λ(V ) ≥ 2a.

Thus
a = λ(T ) = inf{λ(U) | U open, T ⊂ U} ≥ 2a.

This implies a = 0, a contradiction. The claim follows.

Now suppose f vanishes, so r(x0) = 0 for some x0 > 0. Setting x = x0 in (7) and using
the claim, we deduce that r ≡ 0 on the interval x0(1 − δ/2, 1 + δ/2). Extrapolating this
property results in the conclusion r ≡ 0, hence f ≡ 0 which contradicts the hypothesis of
the lemma. �

Before proceeding further, we give some examples of functions f satisfying equation (1)
that do not have the form (2).

Example 1. Let m be a discontinuous function on (0,∞) with the multiplicative property

m(x)m(y) = m(xy), x, y > 0. (12)

(The existence of a large class of such functions is well-established, see e.g. [1]). Then
equation (1) is satisfied with f = g = m and h(t) = m(t/(1 + t2)). Note that that m is
never zero (otherwise (12) implies m ≡ 0).

Example 2. Let a > 0 and define f = I{a}, where I{a} denotes the indicator function
of the singleton set {a}, g = I{2a2}, and h = I{1}. Then it is clear that these functions
satisfy (1).
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Example 3. Let A denote the set of algebraic numbers in (0,∞). Define f = g =
h = IA. Then (1) follows from the fact that A is closed under the positivity-preserving
arithmetic operations and the extraction of square roots. Indeed, this immediately im-
plies that if IA(x)IA(y) = 1, then IA(x2 + y2)IA(y/x) = 1. Conversely, suppose
IA(x2 + y2)IA(y/x) = 1. Write x2 + y2 = α and y/x = β where α, β ∈ A. Sol-
ving for x and y, we have

x =
√

α

1 + β2 , y = β

√
α

1 + β2 .

Thus x, y ∈ A and so IA(x)IA(y) = 1.

This example in conjunction with Lemma 1, provides a new proof of the well-known fact
that (assuming at least one transcendental number exists) the set of algebraic numbers has
zero Lebesgue measure. In fact, replacing A in this argument by an arbitrary set, we obtain
the following result.

Proposition. Let E be a measurable proper subset of (0,∞) closed under addition, multi-
plication, division, and the extraction of square roots. Then E has zero Lebesgue measure.

The above examples show that neither of the additional hypotheses in the theorem is re-
dundant.

Lemma 2. Suppose f satsifes the hypotheses of the theorem. Then f is continuous every-
where.

Proof . By assumption, there exists an interval (a, b) on which r is continuous. In view of
Lemma 1, we may write (7) in the form

r(x) =
r2

(
x(1+t)

2

)
k(t)

r(tx)
, t, x > 0. (13)

Suppose x lies in the interval (a, b) + 3(b − a)/4. Choose and fix t such that both tx
and x(1 + t)/2 lie inside (a, b). Then (13) shows that r is continuous at x . Iterating
this property, we see that r is continuous on (a,∞). A similar argument shows that r is
continuous on (0, b). �

Remark. Lemma 2 implies that f has constant sign, which we may suppose without loss
of generality, is positive. We deduce from (7) that k is then strictly positive and everywhere
continuous.

Lemma 3. Suppose f satisfies the hypotheses of the theorem. Then the function log r is
integrable at 0.

Proof . The argument is a quantitative version of the iterative step in the proofs of Lem-
mas 1 and 2. We make repeated use of (13), which we write as

r(tx) =
r2

(
x(1+t)

2

)
k(t)

r(x)
, t, x > 0. (14)
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First, choose δ < .125 and l, L, m, M such that 0 < l, m < 1, M, L > 1 and

l < r(x) < L, x ∈ [1, 2],
m < k(t) < M, t ∈ [δ, 1].

Taking x = 2 and letting t vary in the range [δ, 1] in (14), we have

l2m

L
< r(x) <

L2 M

l
, x ∈ [2δ, 1]. (15)

Now setting x = 4δ in (14) and using (15) yields

l5m3

L2 M
< r(x) <

L5 M3

l2m
, x ∈ [4δ2, 2δ]. (16)

Setting x = 8δ2 and using (16) in (14) we have

l12m8

L7 M5 < r(x) <
L12 M8

l7m5 , x ∈ [8δ3, 4δ2].

Note that the powers of l, m, L, M in these estimates are increasing (roughly) by a factor
of 3 each time. Iterating this process, we see that there exist constants D < 1 and E > 1
such that

D4n
< r(x) < E4n

, εn < x < εn−1 (17)

where ε = 2δ. Let
q = 4

1
log ε

and note that q > 1/e by choice of δ. Substituting t = εn in (17) gives

| log r(x)| < q log t max(− log D, log E), x ∈ [t, t
n−1

n ].
Since

1∫

0

q log t dt =
0∫

−∞
(eq)xdx < ∞

this implies
1∫

0

| log r(x)|dx < ∞

and we are done. �

Proof of the theorem. Define

G(x) = log r(x) − 1

x

x∫

0

log r(u)du = log r(x) −
1∫

0

log r(xu)du, x > 0. (18)

(Note that Lemma 3 implies that the integrals exist.)
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Taking logarithms in (13), we have

log r(x) + log r(tx) − 2 log r
( x(1 + t)

2

)
= log k(t), t, x > 0.

Thus

G(x) + G(tx) − 2G
(x(1 + t)

2

)

= log k(t) −
1∫

0

(
log r(xu) + log r(txu) − 2 log r

( x(1 + t)u

2

))
du

= log k(t) −
1∫

0

log k(t)du = 0.

Setting y = tx gives

G(x) + G(y) = 2G
( x + y

2

)
, x, y > 0. (19)

Equation (19) is a variant of the Cauchy functional equation. It is well-known (and easy
to show) that the only continuous functions G satisfying (19) are linear functions x �→
ax + b. We can therefore write

log r(x) − 1

x

x∫

0

log r(u)du = cx + p

2

for constants c and p. Multiplying by x and differentiating yields

xr ′(x)

r(x)
= cx + p

2
.

Solving for r gives
r(x) = Ax p/2ecx .

Hence
f (x) = Ax pecx2

as claimed. Substituting this expression into (5) and (6), we obtain the functions g and h
and the proof is complete. �

Concluding remarks

1. The methods of this paper can be used to treat the more general functional equation

f (x)g(y) = F(x2 + y2)G(y/x), x, y > 0.

Assuming the discontinuity sets of f and g are non-dense and f and g are non-
zero on sets of positive Lebesgue measure, we can show that (up to multiplicative
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constants) the functions necessarily have the form

f (x) = x p1ecx2
, g(x) = x p2ecx2

,

F(x) = x pecx , G(x) = x p2

(1 + x2)p
,

where p1 + p2 = 2 p.

2. This subject of functional equations, which originated with Cauchy and Abel, has
spawned an extensive body of advanced techniques (see, e.g. [1]). These techniques
have been used to prove far more general results than those presented here (cf. [2],
[5], and [6]). The advantage of the present approach is that it provides a complete
analysis of equation (1) in the present context, by direct and elementary means.

3. The problem addressed in this article admits a more general formulation. Consider
an arbitrary change of coordinates (x, y) �→ (u, v), where each of u and v de-
pend on both x and y. Which functions f satisfy a product-preserving relation
f (x) f (y)dxdy = g(u)h(v)dudv? We conjecture that (up to scaling) there will
generally exist a two parameter family of functions with this property.
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