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There are many kinds of means of numbers – the most known are the arithmetic mean and
the geometric mean. Already the Pythagoreans, Pythagoras and his school, knew certain
means. Presumably, Pythagoras has learned in Babylonia, besides the two mentioned
means, also the harmonic mean

2xy

x + y

of the numbers x and y. Hischer [4] calls those three means the classical Babylonian
means. In addition, one may infer that the Pythagoreans had even seven other means of
two numbers, as tells Hischer [4], being based on the history books [1] and [2].

By [3], three positive numbers x , m, y are in contraharmonic proportion, if the ratio of the
difference of the second and the first number to the difference of the third and the second
number is equal the ratio of the third and the first number, i.e. if

m − x

y − m
= y

x
. (1)

.

Von den Pythagoräern sind uns zu zwei positiven reellen Zahlen a, b mehrere Mittel-
bildungen überliefert. Den meisten Leserinnen und Lesern dürften das arithmetische,
das geometrische sowie das harmonische Mittel wohl vertraut sein. Weniger bekannt
dürfte vermutlich das sog. kontraharmonische Mittel C(a, b) von a, b sein, das durch
die Grösse (a2 + b2)/(a + b) gegeben ist. Das kontraharmonische Mittel ist im Ver-
gleich zu den anderen genannten Mitteln das Grösste. Der Autor geht im nachfolgen-
den Beitrag der Frage nach, unter welchen Bedingungen das kontraharmonische Mittel
C(a, b) ganzzahlig ist, sofern a, b ganz sind. Im Rahmen seiner Untersuchungen fin-
det er insbesondere einen Zusammenhang zwischen ganzzahligen kontraharmonischen
Mitteln und pythagoräischen Zahlentripeln.
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The middle number m is then called the contraharmonic mean (sometimes: antiharmonic
mean) of the first and the last number.

The contraharmonic proportion has most likely been known in the proportion doctrine of
Pythagoreans, since they have in a manner similar to (1) described the classical Babylonian
means:

m − x

y − m
= x

x
(arithmetic mean m),

m − x

y − m
= x

m
(geometric mean m),

m − x

y − m
= x

y
(harmonic mean m).

Computing the contraharmonic mean m from (1), one obtains

m = x2 + y2

x + y
. (2)

According to this model, one can define the contraharmonic mean of several positive num-
bers x1, . . . , xn:

C(x1, . . . , xn) := x2
1 + . . . + x2

n

x1 + . . . + xn
.

1 Comparisons

The contraharmonic mean of two positive numbers is always between the smaller and the
greater number, as is seen in the following way (suppose that x ≤ y):

x = x2 + xy

x + y
≤ x2 + y2

x + y
≤ xy + y2

x + y
= y.

When one compares the size of the contraharmonic and the harmonic mean of positive
numbers, one sees that their difference

x2 + y2

x + y
− 2xy

x + y
= (x − y)2

x + y

is always nonnegative, whence the contraharmonic mean is at least equal the harmonic
mean. The contraharmonic mean is a “very great” mean, since it is never below the greatest
of the Babylonian means, the arithmetic mean, and it is even at least equal to the quadratic
mean

√
(x2 + y2)/2. The truth of these assertions follows from the identities
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2(x + y)2 .
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2 Integer contraharmonic means

The contraharmonic mean

c := C(u, v) = u2 + v2

u + v
(3)

of two positive integers u and v may be an integer, too; for example, the integer 5 is the
contraharmonic mean of 2 and 6, as well as of 3 and 6, i.e. 2, 5, 6, are in contraharmonic
proportion, similarly are 3, 5, 6:

22 + 62

2 + 6
= 40

8
= 5 = 45

9
= 32 + 62

3 + 6
.

The following table gives more examples:

u 2 3 3 4 4 5 5 6 6 6 6 7 7

v 6 6 15 12 28 20 45 12 18 30 66 42 91

c 5 5 13 10 25 17 41 10 15 26 61 37 85

8 8 8 9 9 ...

24 56 120 18 45 ...

20 50 113 15 39 ...

The nontrivial integer contraharmonic means form Sloane’s sequence A146984.

Theorem 1. For any value of u > 2, there are at least two greater values of v such that
C(u, v) is an integer.

Proof . The values
v := (u − 1)u, v := (2u − 1)u (4)

work always because of the identities

u2 + ((u − 1)u)2

u + (u − 1)u
= u2 − 2u + 2,

u2 + ((2u − 1)u)2

u + (2u − 1)u
= 2u2 − 2u + 1,

the right hand sides of which are positive integers and different for u �= 1. The value u = 2
is an exception, since it has only v = 6 with which its contraharmonic mean is an integer.

�
In (4), the values of v are multiples of u, but this is not necessary to make C(u, v) an
integer, e.g. we have C(10, 15) = 13.

Theorem 2. If u > 1 and C(u, v) is an integer, then u and v have common prime divisors.

Proof . Suppose that we have positive integers u, v such that gcd(u, v) = 1. Then as well,
gcd(u + v, uv) = 1, since otherwise both u + v and uv would be divisible by a prime
p, and thus also one of the factors u and v in uv would be divisible by p; then however
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p | u + v would imply that p | u and p | v, whence we would have gcd(u, v) ≥ p.
Consequently, we must have gcd(u + v, uv) = 1.

We make the additional assumption that u2+v2

u+v
is an integer, i.e. that

u2 + v2 = (u + v)2 − 2uv

is divisible by u + v. Therefore also 2uv is divisible by this sum. But because gcd(u +
v, uv) = 1, the factor 2 must be divisible by u + v, which is at least 2. Thus u = v = 1.

The conclusion is, that only the “most trivial case” u = v = 1 allows that gcd(u, v) = 1.
This settles the proof. �

Theorem 3. If u is an odd prime number, then the values given by (4) are the only possi-
bilities enabling integer contraharmonic means.

Proof . Let u be a positive odd prime. The values v = (u − 1)u and v = (2u − 1)u do
always. As for other possible values of v, according to Theorem 2, they must be multiples
of the prime number u:

v = nu (n ∈ Z).

Now

c = u2 + v2

u + v
= (n2 + 1)u

n + 1
,

and since u is prime, either u | n + 1 or n + 1 | n2 + 1.

In the former case n + 1 = ku, one obtains

c = (k2u2 − 2ku + 2)u

ku
= ku2 − 2u + 2

k
,

which is an integer only for k = 1 and k = 2, corresponding to (4).

In the latter case, there must exist a prime number p dividing both n + 1 and n2 + 1,
whence p � n. The equation

n2 + 1 = (n + 1)2 − 2n

then implies that p | 2n. So we must have p | 2, i.e. necessarily p = 2. Moreover, if we
had 4 | n + 1 and 4 | n2 + 1, then we could write n + 1 = 4m, and thus

n2 + 1 = (4m − 1)2 + 1 = 16m2 − 8m + 2 �≡ 0 (mod 4),

which is impossible. We infer, that now gcd(n + 1, n2 + 1) = 2, and in any case

gcd(n + 1, n2 + 1) ≤ 2.

Nevertheless, since n+1 ≥ 3 and n+1 | n2+1, we should have gcd(n+1, n2+1) � 3. The
contradiction means that the latter case is not possible, and Theorem 3 has been proved.

�
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Theorem 4. If (u1, v, c) is a nontrivial solution of (3) with u1 < c < v, then there is
always another nontrivial solution (u2, v, c) with u2 < v. On the other hand, if (u, v1, c)
is a nontrivial solution with u < c < v1, it allows no different solution (u, v2, c).

For example, there are the solutions (2, 6, 5) and (3, 6, 5); (5, 20, 17) and (12, 20, 17).

Proof . The Diophantine equation (3) may be written

u2 − cu + (v2 − cv) = 0, (5)

whence

u = c ± √
c2 + 4cv − 4v2

2
, (6)

and the discriminant of (5) must be nonnegative because of the existence of the real root
u1. But if it were zero, i.e. if the equation c2 + 4cv − 4v2 = 0 were true, this would imply
for v the irrational value 1

2 (1 + √
2)c. Thus the discriminant must be positive, and then

also the smaller root u of (5) gotten with “−” in front of the square root is positive, since
we can rewrite it as

c − √
c2 + 4cv − 4v2

2
= c2 − (c2 + 4cv − 4v2)

2(c + √
c2 + 4cv − 4v2)

= 2(v − c)v

c + √
c2 + 4cv − 4v2

,

and the numerator is positive because v > c. Consequently, when the discriminant of the
equation (5) is positive, the equation has always two distinct positive roots u. When one of
the roots (u1) is an integer, the other is an integer, too, because in the numerator of (6) the
sum and the difference of two integers are simultaneously even. It follows the existence of
u2, distinct from u1.

If one solves (3) for v, the smaller root

c − √
c2 + 4cu − 4u2

2
= 2(u − c)u

c + √
c2 + 4cu − 4u2

is negative. Thus there cannot be any (u, v2, c). �

One can see that all values of c in the table are hypotenuses in a right triangle with integer
sides. E.g., 41 is the contraharmonic mean of 5 and 45; 92 + 402 = 412. So, there is an
unexpected connection between the integer contraharmonic means and the Pythagorean
triples:

Theorem 5. Any integer contraharmonic mean of two different positive integers is the
hypotenuse of a Pythagorean triple. Conversely, any hypotenuse of a Pythagorean triple
is contraharmonic mean of two different positive integers.

Proof . 1◦. Let the integer c be the contraharmonic mean

c = u2 + v2

u + v
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of the positive integers u and v with u > v. Then u + v | u2 + v2 = (u + v)2 − 2uv,
whence

u + v | 2uv,

and we have the positive integers

a := u − v = u2 − v2

u + v
, b := 2uv

u + v

satisfying

a2 + b2 = (u2 − v2)2 + (2uv)2

(u + v)2
= u4 − 2u2v2 + v4 + 4u2v2

(u + v)2

= u4 + 2u2v2 + v4

(u + v)2
= (u2 + v2)2

(u + v)2
= c2.

2◦. Suppose that c is the hypotenuse of the Pythagorean triple (a, b, c), whence c2 =
a2 + b2. Let us consider the rational numbers

u := c + b + a

2
, v := c + b − a

2
.

Here one of the integers a and b is even but the other and c are odd, or all of a, b, c are
even. Therefore, c + b ± a are always even, and accordingly u and v are positive integers.
We see also that u + v = c + b. Now we obtain

u2 + v2 = c2 + b2 + a2 + 2ab + 2bc + 2ca + c2 + b2 + a2 − 2ab + 2bc − 2ca

4

= 2c2 + 2(a2 + b2) + 4bc

4
= 4c2 + 4bc

4
= c(c + b)

= c(u + v).

Thus, c is the contraharmonic mean u2+v2

u+v
of the different integers u and v. �

References

[1] Boyer, C.B.: A history of mathematics. Wiley & Sons, New York 1968.

[2] Cantor, M.: Vorlesungen über die Geschichte der Mathematik. Erster Band, 2. Auflage, Teubner, Leipzig
1894.

[3] Diderot & d’Alembert: Encyclopédie. Paris 1751–1777 (Electronic version: “L’Encyclopédie de Diderot
et d’Alembert” in http://encyclopedie.uchicago.edu/).

[4] Hischer, H.: Viertausend Jahre Mittelwertbildung – Eine fundamentale Idee der Mathematik und didak-
tische Implikationen. Mathematica didactica 25 (2002), 3–51.

Jussi Pahikkala
Haunionpolku
FI–21310 Vahto, Finnland
e-mail: pahio@uusikaupunki.fi


