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1 Introduction

A positive number n > 0 is called perfect if it is equal to the sum o (n) — n of its proper
divisors. Some classical papers on perfect numbers were written by Peirce [3], Servais
[5], and Sylvester [7] in the 19th century. More recently, Weisstein [9] lists many other
properties of the perfect numbers including Makowski’s result [2] that 28 is the only even
perfect number that exceeds a cube by one. It is natural to wonder whether the result holds
for all perfect numbers. More generally, we can ask whether 28 is the only perfect number
n that is a sum of two non-negative cubes, say, n = x3 4+ a3 with a > 0 and x > 0. This
seems to be a very difficult question.

The object of this paper is
(a) to prove that 28 is the only even perfect number that is a sum of two positive integral
cubes;
(b) to prove (case a = 0) that there are no perfect numbers that are cubes;

(c) to describe a one parameter family of sums s of two cubes such that s is odd and
o(s) =2 (mod 4).

Eine positive natiirliche Zahl n heisst bekanntlich vollkommen, falls n gleich der Sum-
me seiner echten positiven Teiler ist; die Zahlen 6 und 28 sind beispielsweise voll-
kommen. Sitze von Euklid und Euler besagen, dass eine gerade Zahl n genau dann
vollkommen ist, wenn n = 21’_1(21’ — 1) gilt, wobei 27 — 1 und somit auch p Prim-
zahlen sind. Ausgehend von der Gleichung 28 = 33 + 1 bewies A. Makowski im Jahr
1961, dass die Zahl 28 die einzige gerade vollkommene Zahl ist, die eine Kubikzahl
um eins ibertrifft. In der vorliegenden Arbeit verallgemeinert der Autor dieses Ergeb-
nis dahingehend, dass er nachweist, dass 28 die einzige gerade vollkommene Zahl ist,
die Summe zweier Kubikzahlen ist.
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Now we recall some basic results about perfect numbers. It is well known that any even
perfect number n has only two prime factors, so that

n=1tQ2t—1) (1)

where ¢ = 27~! for some prime number p such that 2z — 1 is also prime. Observe that
2t — 1 > t and that ged(¢, 2t — 1) = 1. On the other hand, the most basic result about
the form of a possible odd perfect number comes from Euler. Euler [1] proved that odd
perfect numbers n have the form

n = y4k+lz2 (2)

with k£ > 0 a non-negative integer, z > 0 a positive integer and y a prime number such that
gcd(y,z) = 1 and y = 1 (mod 4). This is indeed an easy consequence of the fact that
o(n) =2 (mod 4); where o (n) denotes the sum of all positive divisors of n.

Let n be an odd perfect number. Touchard [8] proved that either

n=1 (modl12) or n=9 (mod36). 3)

2 The only even perfect number that is also a sum of two cubes is 28

Assume that the even perfect number 7z is a sum of two cubes:
n=x>+a = (x+a)(x2—ax+a2)

for some integers x > 0 and a > 0. In particular a and x have the same parity. Let § be
the discriminant of x2 — (a + 1)x 4+ a* — a. One has § = —(3a® — 6a — 1). Observe that
x?> —ax +a*>> x +aforalla > 2since § < 0if and only if @ > 2. Let us assume now
that @ > 2. The case a € {0, 1, 2} will be considered later. Thus, from (1) we see that

x+a=2"land x? — ax + a? = 27 — 1 so that
2 —ax+a’>=2(x+a)—1. 4)

Since (4) has integral roots x and a 4+ 2 — x the discriminant A = —3a(a — 4) of the
quadratic
2= (a+2)x+ (a—1)7?

must be a perfect square. It is easy to see that A is non-negative exactly when a €
{0, 1, 2, 3,4}. So it remains to consider the cases a € {3,4}. If a = 3 then x € {4, 1}.
Butn isevensox = 1. Thus,x = 1 and a = 3. In other words, we get the perfect number
n = 28. If a = 4 then x = 3. This is not possible since a and x have the same parity.

Now we discuss the case a € {1, 2}. Observe thatif x +a > x2 — ax + a? then we must

have x +a > x2 — ax + a? since the perfect number n = (x + a)(x? — ax + a?) is never
a square. Take a = 2. Thus x 4+ 2 > x> — 2x + 4. But this is not possible for an integer
x. It remains only the case @ = 1. In this case we have as before x + 1 > x% — 2x + 1.
This is true only for x = 1. Soa = 1 and x = 1. But n = x3 4 a3 = 2 is not perfect.
Finally, observe that a = 0 is not possible since 3 does not divide the exponent 1 of the
prime 2t — 1 in n = ¢(2¢t — 1). Thus, n is not a cube. This proves the result.
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3 A perfect number cannot be a cube

We have just seen that an even perfect number cannot be a cube. We assume in the rest
of the section that n = x3 is an odd perfect number. We will get a contradiction by
considering the equality

o(n) =2n (mod 12).

It follows from (2) that

n = pl2+9,6

for some non-negative integer k > 0, for some prime number p = 1 (mod 4) and for
some positive integer » > 0 such that gcd(p,r) = 1. Assume that r can be factored as

r=gq{" - qy" with prime numbers g1, . .., ¢,,. We have then
6
=0 =o(p**o(g)") o (g™ 5)

3.1 Casel:ged(3,n) =1

From (3) we get 2n = 2 (mod 12). Now we compute the value of the right hand side of
(5) modulo 12. First of all (3) implies p € {1,5} (mod 12) for the Euler prime p. So

c(p N =1+p+... +p**=12k+10=-2 (mod 12)
when p =1 (mod 12) and

O_(p12k+9) :(10+52+...+512k+10)+5(10+52+...+512k+8)
= (6k+6) +5(6k +5) =36k +31 =7 (mod 12)

when p =5 (mod 12), since trivially 52 =1 (mod 12).

Observe that g; > 3 is an odd prime. So ¢; € {1,5,7, 11} (mod 12). Thus, qi2 =1
2k+1 2% _

i i

(mod 12). In other words ¢
Thus, one has

=¢; (mod 12) and g 1 (mod 12) for any integer k.

o(q?™) =6a; +1 (mod 12)
when g; =1 (mod 12), and
0@ =14+ . 4+ + @+ +. .+
= QBo; + 1)+ Gai)gi =3a;(1+¢)+1 (mod 12)
when g; # 1 (mod 12).

Seta; = 3a;(14+¢g;)+ 1. Observe thata; = 1 (mod 12) when g; = 7 (mod 12) or when
gi = 11 (mod 12). We have also a; = 6«; + 1 (mod 12) when ¢g; =5 (mod 12).

Moreover, observe that for any integer x, either 6x + 1 = 1 (mod 12) or 6x + 1 = 7
(mod 12). Thus, for all i one has

o(q?™) e (1,7} (mod 12). (6)
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Observe that z € {—2,7} (mod 12) and y € {1,7} (mod 12) implies zy € {—2,1,7}
(mod 12). Thus,

2n = o (n) = o (p'*+%) Ha(qf“f) €{-2,1,7} (mod 12).
i=1

This contradicts (3) that gives 2n = 2 (mod 12); thereby proving the result.

3.2 Case2:ged(3,n) =0
Observe that
o(3%) =1+ @3 +3)+323+3)+...=1 (mod 12).
Hence, as before, we get
o(n) e{=2,1,7} (mod 12).

But (3) implies that 2n = 6 (mod 12). So we get the contradiction o (n) # 2n. This
completes the proof that an odd perfect number cannot be a cube.

4 Our main result about a family of perfect candidates
that are sums of two cubes

First of all a technical and useful lemma follows:

Lemma 4.1. f for some prime number p, for some non-negative integer k > 0 and for
some positive integer s > 1 one has

p4k+1 ) + 32371 (7)
then
k=0.

Proof. We chooser = p,A=2,B = 325=1 and x = 4k + 1 in order to have
A+ B =r".

We get PQ = 6 since P Q is the largest squarefree divisor of AB. Thus, in order to have
the condition 8 = (AB/P)/?is integral fulfilled, we are forced to take P = 6 and Q = 1.
Hence, § = 3°~ !,

It then follows from [4, Theorem 3, p. 219] that

In(6) -3

1
x < EQPI/2 In(P) = V6

But x is odd. So, x = 1 and k = 0. Another proofis to choose x =2r — 1,y =1,n = p,
z =4k + 1in [4, Lemma 2, p. 228] so that we have

3 4+ 2Y =n.
We get as before k = 0. O
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Our main result (whose proof is an immediate corollary of Lemma 4.1 and a check of the
formulae) is then:

Theorem 4.2. Let r > 0 be a positive integer. Define w(r) = 3* 2. Letk > 0 be a
non-negative integer such that the diophantine equation

p(r)4k+l =2 + 34!‘—1’

has an integral solution p(r). Let also, a(r) = 3wr)2 =1, m@r) =3w@)? +3wr) + 1,
n(r) = p(r)* 3% ()2, x(r) =34 p(r) ! — a(r). Then,

k=0

provided p(r) is a prime number. In all cases we have w(r) = 1 (mod 4), so that
p() =1 (mod 4), and

a) p(N*+ =3w(@r) + 2,

b) x(r) =2m(@r) — 1, x(r) = 6w(r)* + 6w(r) + 1,

¢) x(r) +a(r) =3w(r)Bw(r) +2),

d) x(r)? —a(r)x(r) +a@r)? = 3Cwr)? + 3w() + 1)?,

e) x(r)} +a@r)® =n(r).

In other words there is a one parameter family {n(r)} of integers such that n(r) = 1
(mod 4). Moreover if p(r) is prime then n(r) satisfies the necessary condition (2) to be a
perfect number. Furthermore, n(r) is a sum of two cubes for each r.

It is then of some interest to obtain the r’s for which p(r) is a prime number. We have
nry=1 (mod4) and o{®(r))=2 (mod4).

A quick computer check gives

a) if r =0 (mod 3) then p(r) =0 (mod 7);

b) if r =2 (mod 5) then p(r) =0 (mod 11); etc.
Using a) we constructed a list L of 7’s for which p(r) = 2+ 3%~ is a prime number. For
the moment

L =1{1,4,16,31,35,59,61,79,91, 98, 283, 376, 1801, 10948, 11384, 26536}  (8)

contains sixteen elements. We have examined all possible r’s up to 38338. This took
some time, e.g., about 2 hours CPU to test each possible candidate » when r is close to,
say, 30000. This was done on a 8 processor linux machine running command line cmaple
11. We do not know if @, = p(r) is a prime number for an infinity of r’s. Compare with
sequence A134753 in Sloane’s database [6].

Observe that n(r) is perfect if and only if

2n(r) =2-p(r) -3 -m@)? = (p(r)+ 1) -0(3*) - om(r)?) =a(nr)). ()
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We deduce from (9) that if n(r) is perfect then the prime p(#) divides the product o (3% -
o (m(r)?).

Indeed, we checked (in about only 15 seconds) that for all » € L the corresponding n(r)
is not perfect since the prime p(r) does not divide o (m 3.

In order to show that this suffices we claim that if n(r) is perfect then p(r) does not divide
p = o(3*). To prove the claim assume, to the contrary, that p(r) does divide p. Then
from the definition of w(r) in Theorem 4.2 we obtain that

Qu(r) = 3*.
But from Theorem 4.2 part a) we get
27w(r) = —18 (mod p(r)).

So
—19

33" -1 27Tw(r) -1
2 2

Thus, p(r) = 19. But 19, contrary to p(r), is not congruent to 1 (mod 4). This proves
the claim.

(mod p(r)).
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